Partial Differential Equations
CLTE

11.1 INTRODUCTION

A relation between the variables (including the dependent one) and the partial differential
coefficients of the dependent variable with the two or more independent variables is called
a partial differential equation (p.d.e.)

For example:

Jdu Jdu
—_—ty—= +
Xox Yoy 74T ()
e Ay --(2)
Do2u f Damﬁ_
Héxza +Héyza =u --(3)
with au _ ou _ 0 ..-(4)
=R =g 0
ox oy
Pu_, du_ 2w O
ox? oxoy  0y? 0
... ete
B

as standard notations for partial differentiation coefficients.

The order of a partial differential equation is the order of the highest order differential
coefficient occuring in the equation and the degree of the partial differential equation is the
degree of the highest order differential coefficient occurring in the equation.

For example, equation (1) is of Ist order Ist degree, equation (2) is of 2nd order Ist degree
whereas equation (3) is of 2nd order 3rd degree.

If each term of the equation contains either the dependent variable or one of its derivatives,
it is said to be homogeneous, otherwise, non-homogeneous.

For example, equation (2) is homogeneous, whereas equation (1) is non-homogeneous.
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The partial differential equation is said to be linear if the differential co-efficients occurring
in it are of the Ist order only or in other word if in each of the term, the differential co-
efficients are not in square or higher powers or their product, otherwise, non-linear.

e.g. x%p + y?q = z is a linear in z and of first order

Further, a p.d.e. is said to be quasi-linear if degree of highest order derivative is one, no
product of partial derivatives are present
eg.  Z-Z,+(z)?=0Iisaquasi-linear 2nd order.

11.2 FORMATION OF PARTIAL DIFFERENTIAL EQUATIONS

These equations are formed either by the elimination of arbitrary constants or by the
elimination of the arbitrary functions from a relation with one dependent variable and the
rest two or more independent variables.

Observations: When p.d.e. formed by elimination of arbitrary constants
1. If the number of arbitrary constants are more than the number of independent variables in the given
relations, the p.d.e. obtained by elimination will be of 2nd or higher order.
2. If the number of arbitrary constants equals the number of independent variables in the given relation,
the p.d.e. obtained by elimination will be of order one.

Observations: When p.d.e. formed by elimination of arbitrary functions. When n is the number of arbitrary
functions, we may get several p.d.e., but out of which generally one with two least order is selected.

e.g. z = xf(y) + yg (x) involves two arbitrary functions, fand g. Here 6)?24;62)/2 =0 (i)
and Xys = Xp + yq - z (second order) .. (i)
are the two p.d.e. are obtained by elimination of the arbitrary functions. However, 2nd equation being in lower
in order to 1st is the desired p.d.e.

Example 1: Form a partial differential equation by eliminating a, b, ¢ from the relation

X2 y2 Z2
S+t =1 [NIT Kurukshetra, 2003; KUK, 2000]
as b c
Solution: Clearly in the given equation a, b, ¢ are three arbitrary constants and z is a dependent
variable, depending on x and .
We can write the given relations as:
Oy 20

f(X:Y:Z)—aa—Z’fF’fC—Z—lH—O ..(1)

then differentiating (1) partially with respect to x and y respectively, we have

ﬂ+afDa—Z:O, §<eeping 6y_0§

ox 0z Ox ox
of afDa_z O i ox _ U
—+— =0, eeping — =0
and dy 0z oy H( ping ay H
or X, 222 g 0 X +a%zp=0 ..(2)

a2 ¢ ox
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2y , 220z _

and 2 2 dy
Again differentiating (2) with respect to x, we have

ax

N c Z 0z
On substltutlng — = ~—+_ from (2) in above equation, we get
X X

g
X 0X NG

2z 0z 0z _
or XZD(;%+XE&§—ZGX—O ..(4)

2

b2

0 ¢y +b%zq =0 ..(3)

Similarly, differentiating (3) partially with respect to y and substituting the value of
from (3) in the resultant equation, we have
622 Dazﬁ az
vy ga =0 ...(5)
Thus equatlons (4) and (5) are partial differential equations’ of first degree and second
order.
Example 2: Form partial differential equation from z = x f;(x + t) + f,(X + t).

Solution: Clearly z is a function of x and t

p—%— fx+t)+xf/(x +1) + ) (x +1)
X

q:%:xfl'(x+t)+f2'(x+t)
=02 C )+ x )+ K (KD + (X
X
=2f'(x+t)+xf"(x+t)+ 5, (x+ 1)
0 0z _ 0%z . " "
=——=—"=f'(XxX+t)+xf' xX+t)+ f +1
atox axat | MEFUFXIEHDHE ()
t= gﬁ—xf"(x+t)+f"(x+t)
Now (ret)y=2f"x+t)+2xf"x+t)+25,"X+1t)=2s

0’z 62 P 0’z _
X at2 oxot
Example 3: Form the partial differential equation by eliminating the arbitrary function,

Fx+y+2, 32+ y2+72) =0 [KUK, 2004-05, 2003-04]

or
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Solution: Let F((x +y+27), (X2 +y*+ 22)) =0 be Fu,v)=0 (1)
where u=(x+y+2z) and v=(X+y?>+7? ..(2)

Clearly F(u, v) = 0 is an implicit function.

0 0=f =9F0u 0Fov DO
du 0x Ov 0x E
0= =JF U, OFOV D - (3)

Y duady ovoy
@:ﬂ%+a_ua_y+a_uﬂ :(1

whereas +p) ..-(4)
OX O0x0x 0y ox 0z0x
0. oy _ . _ ox . . O
ince — =0=—== asxandy are two independent variables
%5 0X oy H
Ou _0uadx _Audy  du oz
SE 4L = (L)
and oy oxdy oydy ozdy ®)
ov
Similarly, ol (2x + 2zp) ...(6)
X
ov _
E—(ZYJ"ZZQ) ..(7)
Ju Ju ov ov
ituti —, —, — and — j i
Thus, on substituting the values of ox' dy’ ox dy in equation (3), we get
0=Lq+p+ Lixropy .0
ou ov H
oF oF . @)
0=L @+ +L@y+292) ...(G00)E
6u( q) au(y q2) ()E
s OF oF
El t LA or
iminating 3 and v we get

oh Baml=o 0 py-2+ae-0=x-y)

which is the desired p.d.e.

Example 4: Form the partial differential equation (by eliminating the arbitrary function)

from: F(xy + 22, x+y +2) = 0. [NIT Kurukshetra, 2007; KUK, 2002-03]
Solution: Let F(xy + 22, x+y+2)=0 be F(u,v)=0 (1)
where u=xy+ 22

and VEX+y+2Z ..(2)



Clearly F(u, v) = 0 is an implicit relation, so that

whereas

and

Similarly,

On eliminating % and oF

O p(2z - X) — (2z — y)q = (x — y) the desired partial differentiation equation.

OF du . OF dv
= = = 4+ = - :
“oauax avox W g
e _OFou,oFov D
y auay avay (")D
O0u _0duox  oudy  duoz %Jr@
oxX 0Oxox ay ax 0z 0x X
Ou _Quox  9udy duoz _Lou
ay axdy aydy ozoy Boy a
_:]_+
™ 1+p)
ov
— =1+
oy 1+0q)

Partial Differential Equations

. Ju Odu oOv ov . )
On substituting the values of 55 dy’ ax’ gy In equation (3), we get

——(y+2p2)+—(1+p)5

or or D
—au(x+2qz)+av(1+q) g

gy We get
y+2pz 1+p ~0
X+20z 1+q|

% p@=(y+22p)

qH (x + 2zp)

Example 5: Form partial differential equation from the relation

(i) z= y? +2f( +Iogy)
z:y2+2f§)%+logyg

%sz'%HogyE[@—%E
:2y+2f'§}<+logyg%§

On eliminating of 2f'§}< +1log yg, we get (3) as

Solution: (i)

O

and

0z
LY. +
ay y

62 o1

axﬁy

(i) z=f(x + iy) + f(x — iy).
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..(3)

..(4)

...(5)

...(6)

. (7)

..(8)

(1)

..(2)

..(3)
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0 0
0 yq = 2y?> - x°p; when a_)z(:p and a—ZZQ-
(if) Given z=f(x+iy) + f,(x - 1y) ..(1)
&= ot + - iy) e
0z _. . . o .
Ezzlfl(x“y)—lfz(x—ly) ...(3)
- azz_f,, i)+ £ (i
Similarly PV 1 (x+iy) + £, (x —iy) ...(4)
62 - " - . " .
oy =P P (x-i) ..(5)
2 2
O ﬂ+ﬂ:0; where i = -1
ax2  ay?

Example 6: Form partial differential equations from the solutions
(1) =109 + & g(x)
(i) z= %[F(r —at) + F(r + at)] [NIT Kurukshetra, 2008]

Solution: (i): Given z = f(x) + &Y g(x)

0
0 6_32/ = ¢ 9(X), Keeping g(x) as constant.
2
and 272 =¢’ g(X), (On differentiating again with respect to y)
o _ 2
(ii) Given 7 :%[F(r —at) + F(r +at)] ()
%:%@?(r—at) Ora + F'(r + at) (ag ..(2)
2 2
% = aT[F"(r - at) + F"(r +at)| ..(3)
% = %[F'(r —at) + F'(r + at)] —riz[F(r - at) + F(r + at)] (%)
0 %=1[F'(r—«31t)+F'(r+at)]—E
ror r
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%%:%Uwa—ao+F%r+mﬂ—é{PU—aD+PU+aﬂ
_rlz[p(r —at) + F'(r + at)] + r—23[|:(r —at) + F(r + at)]
0%z

%[F”(r - at) + F"(r +at)] —%[F'(r - at) + F'(r +at)] +%[F(r —at) + F(r +at)]
..(5)

o

On using (1), (3), (4) in (5), we get

F2_ 12 20, 20,2,
o2 @ rbr rH P
#z 20z _102 a 0 [,0z[0_0%2

£0c_~1072 is the desired p.d.e.
o Y2orE or a2 P

a2 ror @ or
Example 7: (i) Find the differential equation of all planes which are at a constant distance
‘a’ from the origin. [NIT Kurukshetra, 2006]
(i1) Find the differential equation of all spheres whose centre lies on the z-axis.
(1i1) Find the differential equation of all spheres of radius ‘d’ units having their centres
in the xy-plane.

Solution: (i) Equation of all planes is

ox+pBy+yz+6=0 ..(1)
Now perpendicular distance of P(0, 0, 0) from the plane (1) is given equal to ‘a’, i.e.
aM+BO+yD+d _
=a
NCETET:

0 d=aja? + B +y? ..(2)

Now on substituting the value of d in equation (1),

ax+By+yz+aja?+pi+y? =0 ..(3)
Taking partial derivative of equation (3) with respect to x,
0z
a+ys =0 or a+yp=0 ..(4)
Likewise, [3+y%20 or B+yq=0 ...(5)

On substituting values of a and (3 in terms of y in equation (3), we get

-ypx-yay +yz+a,/y’p? +y*g? +y> =0

ad z=px+qy-a/1+p?+g? the desired partial differential equation.
(i) Equation of spheres whose centre lies on z-axis is given by
X2 +y2+ (z-c)2=d? (1)

(This represents a surface of revolution with axis OZ.)
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First differentiating (1) partially with respect to x, we get
0z
2Xx+2(z-¢c)—=0
(-0~ e
Likewise differentiating partially (1) with respect to y, we get
0z _
2y+2(z—c)a—y—0 ..(3)

Now on eliminating (z — c) from equations (2) and (3),
gx — py = 0, the desired p.d.e.
(iif) Equation of all the spheres of radius ‘d’ whose centre lies in xy plane is given by

(x—a)?+ (y—b)? + 22 = d? (D)
On differentiating (1) partially with respect to x,
0z
2(x-a)+2z—=0
(x - a) ™ ..(2)
Likewise 2(y —b)+ ZZQ =0 ©)
dy

Now on substituting values of (x — a) and (y — b) in equation (1) from equations (2)
and (3) respectively, we get

Eﬂg +Dzﬂﬁ+22:d2
0X H_ ayH
ie. p?z2 + (?22 + 22 =d? or Z%(p*+ ¢?+ 1) = d?

Note: Equation (x — a)2 + (y — b)2 + z2 = d? represents a paraboloid of revolution with vertex at (a, b, 0).

ASSIGNMENT 1

1. Form partial differential equations from the relations:

o _ ¢ xO . o 1

i z=f ga (i) z=e" @x -Y) (iii) Z—€:1X63y+§aze2y +b
2. Form the partial differential equation (by eliminating the arbitrary function)

(i) xyz=@x+y+2) (if) z=1,00 ()
3. Eliminate arbitrary constants a and b from the following relations:

(i) z=ax + by +a? + b? (i) z=axy +b

(i) z = ae" cosbx (iv) ax®+by?+cz*=1
0%z _ ,0%z

4. If z= f(x + ct) + @(x — ct), prove that P c e V&K, 2001; KUK, 2008, 2009]

11.3 ABOUT SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

A solution of partial differential equation (p.d.e.) in some region R of the space of the
independent variable is a function that has the partial derivatives appearing in the equation
is some domain containing R and satisfies the equation everywhere in R (often one merely
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requires that the function is continuous on the boundary of R, has those derivatives in the
interior of R, and satisfies the equation in the interior of R). In general, the totality of solutions
of partial differential equation is very large.

e.g. (i) u=x2-y? (iii) u=eXcosy (iii) u=log(x?-y?) arethree p.d.e.entirely
2 2

different from each other, still are the solution of g l; + g l; = 0, as you may verify. We
X y

shall see for unique solution of a p.d.e. corresponding to the given physical problem, will be
obtainable by the use of additional conditions arising from the problem, for instance, the
condition that the solution u assumes the given values on the boundary of the region
considered (boundary conditions) or, when time t is one of the variables,

that u or u, = g—ltj or both prescribed at t = 0 (initial condition)

We categorize the solution in the following sub-heads:

1. Complete Solution (Complete Integral)

If we can obtain the relation F(x, y, z, a, b) = 0 which contains as many as arbitrary constants
(viz., a and b) as there are independent variables in the partial differentiation equation
f(x,y, z, p, q) = 0 is known as ‘Complete solution’.

2. Particular Solution (Particular Integral)

Particular solution is obtained by giving particular values to the arbitrary constants or the
arbitrary function in the complete solution.

3. General Solution (General Integral)

If in the solution F(X, vy, z, a, b) = 0, we put b = @) and obtain the envelop of the family of
surfaces F(X, Y, z, a, ¢ (a)) = 0, we had a solution containing arbitrary function ¢. This is called
the general solution.

4. Singular Solution (Singular Integral)
The envelop of family of surfaces F(x, y, z, a, b) = 0 obtained by elimination of arbitrary

constants a and b from F(x, y, z, a, b) =0 and Z—F =0= Z—E is called singular solution.

a
Remarks: A partial differential equation is said to be fully solved only if all the three types of integrals viz.,
complete integral, general integral and singular integrals are obtained.

Example 8: Show that if U, and U, be two solutions of linear homogeneous equation

0°U  d°U U _ _d%U ouU . .
0 + Y + a7 - 2 "'bﬁ' then C,U; + C,U, is also a solution.

Extend this result to a linear combination of n independent solutions. Will this result
be true if n - oo

Solution: As U, and U, are solutions of the given equation, therefore
2 2 2 2
ox?  oy?> 9z° ot? ot -
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2 2 2 2
ax?  ay? 9z ot? at "
Multiplying (1) by C, and (2) by C, and adding the two, we get

and

02 0? 02
W(Clul +CU,) + a_yz(clul +CU;) + a?(clul +CU.)

2
= 225U+ CU) +b 2 (U, +CU) .3)

Thus (C,U, + C,U,) is also a solution of the given p.d.e.

Generalisation: If U;, U,, ..., U, are n independent solutions, then C,U; + C,U, + ... +
C,U, is also a solution.

5 } . } } 2
Example 9: Verify that e™™ sin nx is a solution of the heat equation %_E[J =%_L2J. Hence
X

P . . . .
show that ) C, et sin nx; where C,, C,, ..., C, are all arbitrary constants, is a solution

n=1

of this equation satisfying the boundary conditions U(0, t) = 0 and U(m, t) = 0.

Solution: Take U =e™sinnx, then we need to prove that U satisfies the heat equation.

)
Now a—:::e n[Eosnx ..(1)
2
0 ZTLzJ = e "(-n%sinnx) ..(2)
U _ :
and a—LtJ=e ‘(-n?)sin nx ..(3)

Now (2) and (3), we have
U _ 0u

x> ot
Thus Yy = ¢ sinnx is a solution of the given solution.
Let n=1,2, ..., pin U =¢™, then we get p different solutions. Hence by principle of

superposition, we have

U =Cyetsinx +Cye?tsin2x +...+ C,ePtsinpx ..(4)

p y .
or Ux,t)= 5 C,etsinnx ...(5)

n=1
is also a solution.
Further, U(0, t) =0 = U(p, t), since sinnp = 0 for all integer values of n.
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ASSIGNMENT 2

oU oU
1. Show that U = f(x* - y?) is a solution of Y5 - + Xa_y =0.
. -n%t oi nx . . aU 232U
2. Verify that € ~ SINn %E is a solution of the heat equation i =C o
Hence show that Z a, e "tsin %E where a,, a,, ... , are arbitrary constants, is also a

solution satlsfylng the boundary conditions U(0, t) = 0 = U(TC, t).

11.4 EQUATIONS SOLVABLE BY DIRECT INTEGRATION

Partial differential equations occuring with only one partial derivative can be solved directly
by integration. However, in such cases, we must use arbitrary function of variable in place of
constant of integration.

2
z
Example 10: Solve g >+2=0 given that when x =0, z=¢Y and g—)z( 1.
Solution: If z were a function of x alone, the solution would have been
z=C,cosx + C,sinx (1)
where C; and C, are arbitrary constants.
Since here z is a function of both x and vy, therefore, C, and C, can be chosen arbitrary

functions of .
Whence the solution of the given equation is

z = f,(y)sinx + f,(y)cosx ..(2)

0 %— 1(y)cosx — f,(y)sinx .0

When x=0,z=¢¥ O e&¥=1,(y) ...(4)
0z

Also =0, 3¢ =1 0 1=1yy) ...(5)

Hence the required solution is z = sinx + &Y cosx.

2

0°z . . . 0z .
Example 11: Solve =sinxsiny, given that —— =-2siny when x =0, and z = 0,
p axdy Y, g ay y
mn
when y is an odd multiple of 5

2

axdy =sinxsiny with respect to x keeping y

Solution: On integrating the given equation,
constant, 5

92 - _cosxsiny + .1
ay y +dy) (1)
0z _

Given x =0, oy =2siny implies -2siny = —siny + @y)

or @(y) =-siny ...(2)
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Thus (1) becomes g; = -cosxsiny —siny

Now, on integrating (3) with respect to y, we get
Z = cosx cosy + cosy + Y(x)

T
Clearly, when y is an odd multiple of 5 Z= 0 O yx)=0

O z = (1 + cosx)cosy is the required solution.

%z _
Example 12: Solve 2520y =cos(2x + 3y).
0%z

ax%0y

Solution: Given = cos(2x + 3y)

On integrating (1) with respect to x, keeping y constant, we get
0%z _sin(2x+3
= SIN@X*3Y) | gy
oxoy 2
Again integrating (2) with respect to x keeping y constant, we get
0z cos(2x +3
9z _ _COSBEI 4 xt(y)+ gty)
oy 4
Now on integrating (3) with respect to y keeping x constant, we get

= -S4y f 1) dy + fo)dy + V00

or 7= -S04 xay) +Biy) + v

g2z O
Example 13: Solve 109 %E: (x+y).

092z O

Oa27 O log g
Solution: Given log %D: (x+y) or e Doyl = o)
Xoy

. 97 _ (xry)
oxay
On integrating (1) with respect to x keeping y constant, we get
ﬂ = e(x"'Y) + f(y)
ay

where f(y) is an arbitrary constant.
Now, integrating (2) again with respect to y, keeping x constant

z = e+ + x f(y) + @(X)

..(3)

..(4)

(1)

..(2)

..(3)

..(4)

(1)

..(2)

..(3)
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2
Example 14: Solve % =z, given that when y =0; z = e¥and 2—32/ =e™x
y
[NIT Kurukshetra, 2010]

2
Solution: In the equation % =z, if we treat z as pure function of y only, we could solve it
y

like an ordinary differential equation with auxiliary equation as:
D?=1 ie, D=#1

so that z=AeY+ Be?Y ..(2)

Here z is a function of both x and vy, since we are dealing in partial differential equations.
Thus in z = AeY + Be Y, A and B are arbitrary constants, but are like A = @(x) and B = y(x).
Whence

z=q@X) e+ P(x)e Y ..(3)
Now, fory=0,z=¢ O &= @Xx)e®+ (x) e
i.e. e = @(x) + Y(x) --(4)

Again for y =0, g—; =e™ ie., from equation (3), we get

e = [px) & - wxe Y],

0 e =0 € ~ P = 6) - YX) -.5)
Now, on solving equations (4) and (5) for @x) and Y(x), we get
_e+e* _ ad
@x) = 5 - coshxE
and eX — e_x D

— — o ]
Ww(x) = 5 —smhxE

Therefore, z = (cosh x ¥ + sinh x e~ Y) is the desired solution.

ASSIGNMENT 3

9z _ X *z _ .
——==+a — =sin(x
1. Solve axdy y 2. Solve 3y? (xy)
2 _ 20 i —0, % =asiny and Z=0
3. Solve p.de. o a’z, given that when x =0, ax y ay
?z _ _ o, . . 2z 10
—— =¢7'CcosX 5. xys=1 int: Rewrite as =—0
4 oxat %_l oxdy Xy

0 2 t
6. Logs=x+y Hint: Rewrite as, ¥z _ e
0 oxoy 0
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11.5 LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER

A differential equation involving only first order partial differential coefficients p and q is
called partial differential equation of first order. Further, if the degrees of p and g are unity
only then it is termed as linear p.d.e. of first order. If each term of such an equation contains
either the dependent variable or one of the derivatives, the equation is said to be
homogeneous, otherwise non-homogeneous.

Some important partial differential equations of second order are as follows:

o’u _ , du . . . .
1. — =c¢*—, one dimensional wave equation (hyperbolic)
or? ox?
2. OU_ c2 0%u , one dimensional heat equation (parabolic)
ot ox?
o’u . %u _ . ' . .
3. — +== =0, two dimensional Laplace equation (elliptic)
x> ay?
2 2
4, Fu U f(X,y), two dimensional Poisson equation

o oy

5 Pu_ L, Fu

=c , two dimensional wave equation
at? Xz oy?

2 2 2
L‘; +a—l; + a—l; =0, three dimensional Laplace equation
oxs 0dy- 0z
Here c is a constant, t is time, X, y, z are Cartesian co-ordinates Equations other than (4),
all are homogeneous.

6.

Lagrange’s Linear Equation
Ist order linear partial differential equation in its standard form
Pp+Qgq=R ..(1)
where P, Q, R are functions of x, y, z is called Lagrange’s Linear Equation. This equation is
obtained by eliminating arbitrary function f from
flu,v)=0 ..(2)
where u, v are functions of x, vy, z.
Here we show that its solution depends on the solution of the equations
dx _dy _dz
P Q R ...(3)

Differentiating (2) partially with respect to x and y respectively, we get

ﬂﬂ + ﬂﬂ = OD

dudx Ovox @i implicit relation)
0 (as (2) is an implicit relation

ot ou, 9t dv _ o P

dudy oavay H
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More precisely,

of ou au %
— + — 0
ou E%x 0z E H

of Chu au O, of o, ov O_ D: ..-(4)
auHa_ PR aanT oz B H
of _ 9x
(as ox 0= oy’ X and y being two independent variables.)
y
. N of of
From above equations, on eliminating U and v We have

du au ov av
X azp X azp

ou . du ov _ ov ...(5)
oy azq ay 0z

o Doudv_ouovD puov_duovp _oudv _dudv
implying %az 6zayH 0z 0x O 0z ox dy 0y ox --(6)

which is the same as equation (1) with
_uaov _ouoavl

“Bay oz azoayH

%GV ou GVE
0z O0X O0X 0z

[9u gv _ gu ovU

_Ha_ay ay GXH

Now in order to find u and v, let u = aand v = b, where a and b are two arbitrary constants,
so that
0=du —ﬂdx +ﬂdy+@dz
ox o9y = 9z H
O
(7
and 0=dv —ﬂdx+ﬂdy+@dz 0
0x ay 9z H
From above simultaneous equations, we get

dx dy dz
auﬂ_aiu@ ouodv _duodv 6u6v _duov

dy 0z 0z 0y 0z0x 0xO0z 0xody 0y ox
dx _dy _dz
or P Q R
Solution of above differential equation are u=aand v = b.
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whence the solution of Lagrange’s Linear equation Pp + Qq= R is
flu,v) =0 or f(a, b)=0.

Working Rule for Solving Lagrange’s Equations
(i) Corresponding to Lagrange’s Equation (linear partial differential equation)
Pp+ Qq=R.
Form the auxiliary equations
dx _dy _dz
P Q R
(if) Solve these auxiliary equations by the method of grouping or the method of the
multiplier or both for getting two independent integrals, say, u = aand v = b. Then the

general integral of the given equation will be f(u, v) = 0 or u = f(v), where f is an
arbitrary function.

Note: In case of linear equation with n independent variables, say, Pp, + P,p, + ... + P p = R,
where .:ﬂ j=1,2 n; d f i f

Pj ax. 14 PP, L, P and R are functions of x, x,, ..., X, and z.

]
The subsidiary equation is
AR PR R

and solution is f(uy, u,, ..., u,) =0 where u, = const., u, = const. so on. u,, = constant, are the solutions of the
subsidiary equations.
Geometrical Interpretation of Lagrange’s Equation
Lagrange’s linear equation S pigi-1

Pp+Qgq=R ..(1)
may be written as
Po+Qq+(-1R=0
Let the solution of (1) be

f(x,y,2) =0 .(2) Txy2=0 R
representing a surface, the normal to which at any
point has direction cosines proportional to dx _dy _dz
of ot of Fig. 11.1 S
ox 9y 0z 9. 22
of _of
ox . 0y . _
or ot ‘ot 1
0z 0z
E'E'—l or p:q:-1

or ox oy
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Further, the simultaneous equations

dx _dy _ dz
P 6 "R ..(3)
represent a family of curves such that the tangent to which at any point has the direction
cosines proportional to P, Q, R and that f(u, v) = 0 represents a surface through such curves
where u = constant, v = constant (say a and b respectively), are two particular integrals of (3).
Hence, the geometrical interpretation of equation (1) is that ““the normal to the surface (2)
is perpendicular to a line (say u = a or v = b = f(a)) whose direction cosines are proportional to
P, Q, R and so that the sum of their respective product is Pp + Qq + R(-1) =0 or Pp + Qg = R.
Or in other words, the equation (1) states that normal to the surface (2) at any point is
perpendicular to the members of the family (3) through that point and which is true for
every point on the surface (1).

Thus, the equation (1), Pp + Qg = R and the equation (3), d—PX = (g = % defines the same
set of surfaces and hence equivalent.
Example 15: Solve the following equations
(i) (Z%-2yz-y)p+ (xy + x2)q = (xy - 2X)
(i) p tanx + g tany = tanz (KUK, 2000)
(iii) px-aqy = (y* - x)
(iv) y?p - xyq = x(z - 2y) (KUK, 2008)
Solution:
(i) The subsidiary equations are given by
dx _ dy _  dz _xdx+ydy+zdz
(2 -2yz-y?) (xy+xz) (Xy-2zx) 0 (1)
[ I I v
dy _ dz
y+2) (y-2
Which on simplification results to
(ydy — zdz) + (zdy + ydz) =0

Taking

ydy zdz
2 ———+d =0
> > (y2)

On integrating, we have
(y?-22-2yz)=C,; (2
Also from (1), we have
dx _Xdx+ydy+zdz
2 -2xz-y?) 0
i.e. xdx+ydy+zdz=0 0O x?+y?+2°=C, ..(3)
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00 The desired solution is
f(C,,C)) =0 or fly,—z,-2yz, x> +y>+7%) =0
dx dy dz

(i) tanx tany " tanz
I I "

dx_ _ dy
' tanx tany

On taking | & 11

0 J'cotx dx =Icoty dy or log sinx = log siny — log C,

_[siny[Q
or Cl—gsTnXg ..(1)
N . dy dz
= O tydy = tzd
Likewise taking Il & IlI, tany  tanz Ico y dy Ico zdz

or logsiny = log sinz - logC,

Usinz U

) . [siny sinzU
O Thed d solut f(C,,CY)=0 =f 37—, =
e desired solution is f(C,, C,)) Bsinx smyH

(iif) The subsidiary equations are

%_d_y_ dz _ xdx+ydy+dz

X -y y2-x 0
[ Il I v
: dx _ dy
On taking | & I1, we have X oy O logx =-logy + logC,
O logixy) =log C, O xy=C¢C, ..(1)
xdx +ydy+dz
Taking | & 1V, %:( yey )
X 0
or xdx+ydy+dz=0 0O x2+y>+2z2=C, ..(2)

0 f(C, C,) =0 or f(xy, x? + y? + 2z) = 0, the desired solution.
(iv) Here subsidiary equations are
dx_dy _ dz

Y2 Xy X(z-2y) ()
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dx _ d .
On taking | & I, y__Tyy O xdx+ydy=0, ie. (x*+y)=¢C,
Likewise, on taking
dy _ dz _dz-dy
-Xy  XZ-2Xy XZ-Xy

dy _dz-dy
Ty -y
On simplifying, we get

ie.,

zdy+ydz=2ydy, ie d(yz)=d(y?) or y’-yz=C,

Alternately, dy = dz-dy is of the form 9
-y z-y f(x)
O —-logy =log(z-y) -logC, or y(z-y)=C,

Hence the solution is f(x2 + y?, y? — yz) = 0

Example 16: Solve Ist order linear partial differential equation
p(x% - y2 - 72 + q(2xy) = 2xz

Solution: Here we have,

dx _Gdy _dz _ xdx +ydy+zdz
X2—y2 =72 2xy 2xz X(X* —y® - Z%) + y(2xy) + Z(2x2)
I o IV
Taking Hand 111, ¥=92 g Y_¢
y Z z
(xdx+ydy+zdz)
Taking Il and IV, 5 2xz X(2 +y?2 + 2)

0 dz _ dO¢ +y? +2%) E\Nhich is of the form 90
z  (RC+y?+722) f(x &
0 logz + log C, = log(x® + y? + z2)
X2 + 2 + 22
0 c, = Xty +7%)
z
Hence the desired solution is f(C;, C,) =0

Dy x2+y + 27220

or E_ E_
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..(2)

..(3)

..(4)

...(5)

(1)

..(2)
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Example 17: Solve the following Ist order linear partial differential equations

(i) y?zp + xzq = y?x
(i) p—qg=log(x +y)
(iii) pyz + gzx = xy

Solution:
(i) Here subsidiary equations are

dx _dy _dz
v’z X’z y*

On taking | and Il, we get
dx _ d
vz = xTyz or xXdx=ydy or (x3-y¥)=C,

Likewise, taking | & I1I, we get

dx _ dy
Vi vz or xdx=zdz O (X*-y?)=C,
Hence the desired solution is f(x3 - y3, x? — y?) = 0.

i ; d
(ii) The subsidiary equations are d—lx = __31 = %
| I 1l
On taking | and 11,

dx _ dy _
T 0 k+y)=a (ay)

Now on taking | & Ill, we get
dx _ dz 0 dx _ dz
1 log(x+y) 1 loga
On integrating, (log a)x = z + b (say)
O x-log(x+y)=z+bhb On using (1)
O xlog(x+y)=z+ @@ as b= @)
O xlog(x +y) - 2= @x +y)
(iii) Here the subsidiary equations are
yz X Xy
(I | I ([
On taking | and Il, we get
d_dy

vz = 2x xdx=ydy O (xX*-y)=C,;

O (log a)-dx =dz

[NIT Kurukshetra, 2007]

(1)

..(2)

(1)

..(2)

..(3)

(1)
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On taking Il and II, we get

dy_d g ygy=zdz O y2-29)=¢C, ..(2)
ZX Xy
Hence the desired solution is f(C;, C,) =0 or f(x*> - y? y>-2z?) = 0.

Example 18: Solve the following Lagrange’s Linear partial differential equations

(i) (0 = y2)p + (y* - 2X)q = (Z* - xy) [KUK, 2009]
(i) X2(y = 2)p + Y3(z - X)q = 2’(x - ) [KUK, 2004-05]
(i) x(y? = 29)p + y(2° - x)q - z(x* - y?) =0 [NIT Jalandhar, 2006; KUK, 2003-04]

Solution:
(i) Here the auxiliary equations are
dx _ dy _ dz
x2-yz y*-zx Z2-Xxy
[ I I

or dx _ dy _  dz
0 -yz) -2 (2 -xy)
_ dx —dy _ dy —dz _ dz —dx
C-y)-(y?-2x) (V¥ -20)-(Z-xy) (Z-xy)-0¢-y2)
A B c
On taking expressions A and B,
dx — dy _ dy —dz
¢ -y2)=(y? —zx) (> —2x) —(Z - xy)
On simplification we get,
dx —dy _ dy —dz
X-y)x+y+z) (y-2)(x+y+2)
or dx -dy _dy-—dz ., which is of the formw
x-y) (-2 f(x)
On integration,
x —yO
log(x-y)=lo -2)+logC, O (C, = .1
g(x-y) gy -2 9L, 1 ayTZH (1)
Likewise, on taking 1l and III, dy —dz _ dz - dx
-2 (z-%
or log(y-z)=log(z-x)+1logC, O C,= :)Z(% ...(2)

Hence, the desired solution of the given p.d.e. is f Da_x —y y-zh 0
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(if) Here, the subsidiary equations are
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dx __dy _  dz
Xy-2 Y@E-9 2x-y) =)
I I 1
1dx +1dy +1dz
. dx _ dy _ dz _ X y z
X¥(y-2) Y(z-x) Z(x-y) 1x2(y -2)+ 1y2(z -X)+ ;zz(x -y)
X y z
idx +idy +;dz
OJ dX = dy = dZ = X y z
X(y-2) yAz-x) Z%(x-Y) 0
0 ldx+1dy+1dz:O
X y z
g logxyz =logC;, O xyz=C, ..(2)
Likewise, (1) also becomes
1 1 1
—dx+—dy+=-dz
dx:dy:dzzxzxyzyz2
X(y-2) yHz-x) Z(x-y) (Y-2)+@-x)+(x-y)
1 1 1. _
or ;dx+?dy+?dz—0
On integration of each term with respective variable, we get
1 1 1 1 _ _ _
. X"y TZTE O G=(xtrytez)
O The desired solution, f(xyz, x1+ y?1+z1)=0.
(iii) The subsidiary equations are
1 1 1
—dx+=dy +=dz
dx __dy _ dz _ xdx+ydy+zdz _ X X yy z g ()
Xy =22 Y2 -x}) 2 -y?) 0 0
| I I v \%
From above, expression IV gives
xdx+ydy+zdz=0
XY 2 2424 52 =
0 —+—+—=c 0O x+y-+z22=C ..(2
> T TS y 1 (2)
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From expression V, we get
1dx+1dy+1dz:O
X y z
logx + logy + logz =logC, O xyz=C, ..(3)
Hence, the desired solution is f(x? + y? + z2, xyz) = 0.
Example 19: Solve the following partial differential equations

(i) x(y-2p+y@z-x)q=2z(x-Y) [KUK, 2002-03]
(i) (y+2)p+(z+x)q = (x+y).

Solution: (i) Here the subsidiary equations are

dx __dy _ dz
XXy-2) Yz-%x) zx-y)

. - 1 1 1
@] th Itipl —, —, —, we get
n using the multiplier X'y z g
1 1 1
=dx+=dy +=dz
_dx _ dy _ dz _X y y z :dx+dy+dz
Xy-2) yz-%x) zx-y) 0 0
I 1] " v \Y;

. 1 1 1
From expression 1V, we get ;dX + ydy + ;dz =0

log xyz =logC, O xyz=C,
From expression V, dx+dy+dz=0 O (x+y+2z)=C,
Hence the desired solution is f(xyz, x +y + z) = 0.

(i) Here in this case, the auxiliary equations are

dx _ dy _ dz
(Y+2) (2+X) (x+Y) (1)

The relation (1) is extended to,

dx _ dy _ dz _dx+dy+dz dx-dy dy-dz
Y+2) (Z+X) (x+y) 2x+y+2 —-(x-y) -(y-2)
| 1 11 \Y V VI

From IV and V, we get

(dx+dy+dz) (dx—dy) L f'(x)
Xty +2)  —(x=y)’ which is of the form W
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%Iog(x +y+2z)+log(x—-y)=logC

logC, = log(x + y + 2)(X — y)?

From expressions V and VI,
(dx —dy) _ (dy - d2)

x-vy)

-yQ -yQ
u IOQEX)TZHZIOQCZ or S.;%H:Cz

. .. 4 , Ox -y
Hence, the desired solution is f EP( +y+2z)(X-y) Hﬁ%: 0.

(-2
O log(x-vy)=log(y - z) + logC,

or C,=(Xx+y+2)(x-y)?

Example 20: Solve the linear partial differential equation

(1) XoX3Py + X3X1Py + X1 XoP3 = = X1 XpXg

du du

du

(iii) X—t+ty_—+Z—=Xyz

ox oy

0z

Solution: (i) Comparing the given equation

XoX3Pg + X3X1Pp + X XoP3 = — X XpX3

with the equation

Pip; + Pyp, + Pgps+ ... + P p, =R

we get the auxiliary equations as:

By _dx _dx . _dx _p
PP PR P
. dx, _dx, _dx, _ dz
XXs XX XXy XXX
On taking | and 1V, we get
xdx, +dz=0 0O x2+2z2=C,

Likewise, from | & Il and | & 11, we get

2 2 — 2 2 —
Xi—=x5=C, and x;f-x3=C,4

(if) —py+p,+ps=1

Hence the general integral is f(x? + 2z, x? - x3, x?—-x3) =0.

(1)

..(2)

[CDLU, 2004]

(1)

..(2)

..(3)

..(4)

...(5)

...(6)

(i) As explained above, the corresponding auxiliary equations in this case are

dx _ dx, _ dxg _ dz

-1
|

1
Il

1
11

1
\Y)

(1)
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Taking | and 1V,
dx,+dz=0 0O x,+z=C;
Likewise, from | and Il and | and Ill, we get
X3+ %=GC,
and Xy + X3 = Cy
Hence, the desired solution is f(x; + z, X; + X5, X; + X3) = 0.

697

..(2)

..(3)
..(4)

(iii) Here in this case when u is a function of three independent variables x, y and z, the

desired auxiliary equations are
dx_dy _dz_ du
X 'y Z Xyz
| v

dy

_ dx _
On taking | and II, Xy

0 logx = logy + logC 0O =G

< | x

Similarly taking Il and Ill, we get Y- C,
z
yzdx+zxdy +xy dz _ du
3xyz T Xyz
O yzdx +zxdy + xy dz=3du or d(xyz) =3du or xyz-3u=C,

Again

Ox
Hence, the desired solution is f H)_/ % Xyz - 3UH

Example 21: Solve p + 5q = 9z + tan(y - 5x).

Solution: Here the auxiliary equations are
dx_dy_  dz
1 5 9z+tan(y-5x)
Taking | and 1I, we get

d—1X=d—5y O (y-5)=¢C,
On taking | and IlI, we get

dx _ dz

1 _9z+tanC1

« = log(9z + tanC,)
- 9

9x = log(9z + tan(y - 5x)) — logC,

-logC,

(1)

..(2)
..(3)

..(4)

(1)

..(2)
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O logC, = log[9z + tan(y — 5x)] -
0 C, =& %[9z + tan(y - 5x)] ..(3)
Hence, the desired solution is
( e [9z +tan(y - 5x)], y - 5x) =0.
Example 22: Solve p cos(x + y) + g sin(x + y) = z.
Solution: The subsidiary equations are
dx _ dy _ dz _ (dx +dy) _ dx —dy
cos(x+y) sin(x+y) z cos(x+y)+sin(x+y) cos(x+y)-sin(x+y)
I I I v \%
Let x+y)=u 0O (@dx+dy)=du
From Ill and 1V, % = du = du , since smaj +—D—ﬁ(sinu + cosu)

cosu +sinu \/ESinB’J+Z|:|

1 T
logz = —log[cosecU —cotU]+ logC,, U=zu+-—
0 9z=7 gl ]+logC, 2
z 01 cosU O
log—=—1lo
D gC1 J— % Hinu " sinu B
O U 0O
Iog _ og cosUD IogD 2sin 2 0O
£ - D—
log Io éan—
0 g 5B
0 JZlog£ =1o Ean U+E% asU=u+2
gq J QE 8 4
V2
Ezu nigd =G
u tan = +—
B 8H
0 CS:ZﬁcothJ+ED 22 ko taT+§E
Further, dx + dy = dx - dy

COS(X +Y) +sin(x+Yy) cos(X +Yy)—sin(x +y)
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cos(x+y) = sIN(*Y) 4y 1 dy) = f(ax - dy)
ICOS(X +y)+sin(x +y)

¢
Here LHS is comparable to I f((xx))

dx = log f(x)

O log[cos(x + y) + sin(x+ y)] = (x-y) + logC,
Rewrite as  log[cos(x + y) + sin(x + y)] = log eX~Y) + logC,
0 e =Y [cos(x + y) + sin(x + y)] = C,.

Hence f Ezﬁ cotéx% + g% ev=9{cos(x +y) +sin(x + y)}E: 0

Example 23: Solve the equation z-xp-yq=a,/x*+y?+2z°.

Solution: The subsidiary equations are as follows:
dx _dy _ dz _ xdx+ydy+zdz

x y z-a\@+y +Z  (C+y +2)-az [ +y + 7

Putting (x?+ y?> + z%) = u?> sothat (xdx + ydy + zdz) = u du

%:ﬂ: dz — udu — du
= X Yy z—a\/x2+y2+z2 u>-azu u-az

dx_dy_ dz _ du _ du+dz

X 'y z-au u-az (1-au+2)
Taking Ox__du+dz 4 _,dx_dut+ds

x (1-au+z) X (u+2)

Integrating (1 — a)logx = log(u + z) + logC,

0 x(l‘a):Cl(u+z):C1{z+w/x2+y2+22} ..(D)

. dx _ dy
Again, N y
X _
g logx = logy + logC, or y—cz ..(2)

Therefore, general solution is f(C;, C,) = 0
O
0 x‘l‘a)={z+w/x2+y2+zz}¢%a

Example 24: Solve the Lagrange’s Linear differential equation
PX(z — 2y?) = (z - qy)(z - y? - 2x3) [KUK, 2007, 2010]
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Solution: On rewriting the given equation, we have

PX(z - 2y°) + Qy(z - y? - 2x%) = 2(2 - y* - 2X°)
On comparing with Pp + Qq = R, we have

P=x(z-2y? g
Q=yz-y*-2) O
R=2z(z-y>-2x% E
Here subsidiary equations are
dx _dy _dz
P Q R
ax  _ dy _ dz

or XZ-2y2) yz-y2-2x3) zz-Yy? -2x)
[ I 1

On considering Il and I1l, we get

dy _dz or y=az
y z
Now, consider | and Il and make use of expression (3), we have
dx _ dz
X(z —2a%z2%) z2(z - a*Z? - 2x3)
dx _ dz
or X(1-2a%z) (z-a*z% -2x%)

0  (xdz-zdx)+ 2x3 dx = 2a% xz dz — a® z% dx

Divide throughout by x?,

(x dz = z dx) + 2% dx a2(2xzdz 2% dx)
X2 X2
z o — o220
d@;@+d(x)—ad5;5
DZ+X2—a2L2D:b2 or £+X2—L2:b
Bx x B X X

Dy z,

Hence the required solution is,

TX HCO
Example 25: Solve Lagrange’s Linear differential equation
dx _ dy dz

(i) o=+ = (ii) p(y? + z?+yz) + q(z> + zx + x?) =

Y z-afx?+y?+7?

(1)

..(2)

..(3)

(X% + xy + y2).
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Solution: The corresponding subsidiary equations are
odx _dy _ dz _ xdx +ydy + zdz .
Ol y z-a+y?+22 (R+y’+2)-ag e +y + 2 ()
Let x?+y>+7°=t> sothat (xdx+ydy+zdz)=tdt ..(2)
On using (2), relation (1) becomes
dx _dy dz _ tdt
Bviinievnie T — ...(3)
X y z-at ¢t -azt
Now from (3), we have
dx _ dy _ X _
Xy O logx=logCy 0O V_Cl ..(4)
dx _ dz _ dt _ dt +dz
and X z-at t-az (t-az)+(z-at)
(dt+dz) _dx
(1-at+z) x
O log(t+ z) = (1 - a)logx + logC,
o e 0 FEu
X X
Uy X2 +y?+22 +2z0
Here the solution is f(C,, C;) =0= fi. ))l(l—a B
(i) The subsidiary equations are
dx _ dy _ dz _ (dy —dx) _ (dz —dy)
V4yz+72 PHzx+x2 X +xy+y? X-y)(X+y+2) (Y-2)(x+y+2)
(dy —dx) _ (dz —dy)
x-y) (-2
0 log(y - x) = log(y - z) + logC,
O (y-x)=Cyly-2) (1)
Similarly dy —dx = dz - dx
X=y)x+y+2z) (x-y)x+y+2)
- (dy - dx) _ (dz-dx)
x-y)  (x-y)
O log(x — y) = log(x — z) + logC,
g (X—-y)=Cyx-2) ..(2)

Ox —

O The desired solution is f(C;, C,) =0 or f

y y-xt_
x-2z'y-zA

0.
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ou ou , _du Xy
Example 26: x—+y—+z7z—=au+—=.
P 0x yay 0z z

Solution: Here the subsidiary equations are
dx_dy _dz__du

Xy z a9
Z

[ I 1 v
Taking | and II, we get
%:ﬂ 0 X:(;l

X y X
Likewise from | & Ill, we have
z
x
Again from | and IV, we get
Xy
dx _ du du_2"
X au Y dx X
z
du _a _VY du a, _GC .
O dx ;U = or ™ ;U ~C (on using (2) and (3))

Which is an ordinary linear differential equation with Integrating Factor,

_(a
IF.=e Ix™ zgaloox = L
Xa

upk = &Ii dx +C,
X2 »J x@

O C
B _y X—a+1
uxi=2[F——+
or z —a+l S
1-a
or ux‘a—XDX—=C3
z 1-a

a _X EE1—a§=0

Hence the general integral, fa;, L ux i s

ASSIGNMENT 4
1. Solve z(xp-yq) = (y?> - x?)
2. Solve (y3x —2x%) + (2y* - x3y)q = 9z(x® - y®)
2
3. Solve Lagrange’s equation TZp +2zxq = y2.

(1)

..(2)

..(3)

..(4)

...(5)

..(6)
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4. Solve linear partial differential equation (mz — ny)p + (nx — I1z)q = (ly — mx).

5. Find the surface whose tangent planes cut of an intercept of constant length k from the
z-axis.
[Hint: Equation of the tangent plane at (x,y, 2)is (Z-2) = (X=x)p + (Y = y)q.]

ou ou oJu
+zZ+U)—+@Z+X+U)—+X+Yy+U)—=(X+Yy+zZ
6. Solve (¥ )ax ( )ay x+y )aZ (X+y+2),

11.6 NON-LINEAR EQUATIONS OF FIRST ORDER

As already defined, when p and q occur other than in the first degree, the equation is a non-
linear one and its general solution contains only two arbitrary constants (viz equal to the
number of independent variable i.e., x and y). These equations are discussed under following
four standard forms.

I. When Equation Contains p and g Only (i.e., no X, y, z.) — First Standard Form
Let the equation be

f(p, 9) = 0 (1)
The obvious complete solution for this equation is
z=ax+hy+c ..(2)
viz replacement of p, q by two arbitrary constants a, b respectively as
0z 0z
p—&—a and q—a—y—b ..(3)
whence a and b are related by the relation
fla, b) =0 ...(4)
Further (4) gives b = f(a) and with this, the complete solution (2) may be written as
z=ax+flay+c ...(5)
Example 27: Solve (i) pg+ p+q=0 (i)p*-g®=0.

Solution: (i) As the given equation falls under the Ist category i.e., f(p, @) =0
whence f(a,b)=ab+a+b=0 ..(1)

0  (a+Lb+a=0 or b:—%g (2

Hence the desired solution,
z=ax+hby+C

z=ax + f(a)y + C, where b = f(a) ..(3)
z=ax—-—2 y+C
(@a+1)

(i) Here, f(a, b)= (3-b%) =0 O (a—b)@+h2+ab)=0
ie. eithera=b or a?+b2+ab=0
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On using, b = a in the obvious solution, z=ax + by + C
we get z=a(x+y)+C.
Example 28: Solve x%p? + y?q? = z2.
Solution: On rewriting the given equation as

z Dyazﬁ_
S e B

Nowlet — ogx, Y=gy %Z-gz,
X y z
so that X=logx, Y=logy, Z=logz

Further (2) implies

a_Z = 5 g and a_Z = X Eﬂ
0X z 0x oY z oy
On using (4), (1) becomes

azg+§(§£g:1 2 2 _
E& v or PP+Q°=1

where f(p, g) = 0 has complete integral as
Z=aX+bhY+C

Here, faub)=0 O a?+b?=1 or p=+/1-a2
O Z=aX+1-aY +logC
or logz=alogx ++/1-a%logy+logC, Using (3)
O 7 =Cx? W is the required solution.

Il. Equation Containing p, g and z (i.e., no x and y) — Second Standard Form
The equation is of the form

f(p,a,2) =0
Let us assume its solution be
z=@u) where u=x+ay
_9z_dzou_dz

with p_ax_aax_du
g0z dzou_ dz
and dy duoy du

Whence the equation (1) reduces to

f@, % a%@:o

(1)

..(2)
..(3)

..(4)

...(5)

...(6)

(1)

. (2)
..(3)

..(4)
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L dz . . . . . . .
which is clearly a relation in z, qu e-a first order ordinary linear differential equation, and
hence solved by variable seperable method.

Note: Sometimes the equation in its given form is not of the form f(p, g, z) but after certain transformation or
substitution it reduces to f(p, g, z) = 0.

Example 29: Obtain the complete solution of following equations:

(i) z=p*+ ¢? (i) pL + 9) = q(z - &).
_ _ 0z _dzou_dz O
I - (i) L = h “ox duox _du’
Solution: (i) Let u= x+ ay, so that ox duox du'H

_0z _dzou_ dzg
ay du 6y duf

With the above values of p and g, the given equation reduces to
dzgZ dzgZ
Z = + =
Q@ % du
0 Z_(1+a)2EdT§ or du= (1+a)1/2 L

0 u+b=21+ad)2z72 bisan arbitary constant
O (x+ay+b?=4(1+a%z

which is the desired solution.

(i) Withu=x+by and p= glzj q= bg the given equation becomes

e

0 1+§3€§:b(z—a)

0 E:—ig:b(z—a)—l

0 4z =xdu

Jb(z-a)-1

S CELE

O «bz-ab-1==% g(x +by +¢) is the desired solution.
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Example 30: Solve z2(p?+ g + 1) = C2

Solution: Letu=x+ay sothat P ox  du ax

0
—0z_dzou_ dzp

4= oy  du oy duf
Now given equation reduces to
ad
B B i
u du 0
dz
21+ EZ:CZ—Z2
0 2era)EliE = -2)
1 2 _ 2
0 (1+a%)2 2 = iu
du z
z _,_4du
o JE- 2T e
On integrating both sides, we get
- C2—22 =+ u +Db 2—2:—M_b
( ) T+ o or V€ -7z =% Tra
Alternately: Put zdz = dZ
0 2.z 2 =
7— or z2=27
0z _dz dz _ |
Now dx _ dz dx Zp  (using (1))
4z _dzdz _,,
dy dz dx
Therefore, the given equation reduces to
mzdt ozl o,
Oox O +%E +2Z =C4
which is clearly of the form f(p, g, z) =0
Now, let Z =f(x +ay)=f(u), whenu=x+ay
and d_Z:d_Z%:d_ZD_:d_Z U
dx dudx du du H
4z _dzdu_dz_ __dzp

(1)
..(2)

..(3)

..(4)

...(5)



Partial Differential Equations

Therefore (4) reduces to

Ed—zg(l+az)+22:c2
du

o @+ az)vzg_z = (€? - 22)/*
u

dzZ _
[ (1+a?)? C ooz du
0 —J1+a?JC?-2Z =u+b

O

Example 31: Solve p(p?+ 1) + (b - z)g = 0.

(1 + a?)(C? - 2z) = (x + ay + b?) which is the desired solution.

707

[KUK, 2005]

Solution: The equation p(p? + 1) + (b — z)q = 0 falls under non-linear partial differential

equation of the type f(p, q,2) =0

_ du_, du_
Take u = (x + ay), so that X =1, 3y =a
_dz_dzou_dz
therefore = ox duox  du
0z _dzou _ dz
= Y = = —a
and a dy dudy du

Whence the given equation reduces to

%g + 1D+ ab - z)— =
dz dzg U
- +1+ab-2)=0
or du% ( )E
I I

dZ_ —dZ =
From II, E—Ja(z—b)—l or W du
Jal(z—b)—l:quC
= alt
2
1
0 2[a(z-b)-1]2 = (au +c)
O 4[a(z - b) — 1] = [a(x + ay) + c]?

Example 32: Solve z? = | + p?+ ¢

(1)

..(2)

..(3)
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Solution: Let u = (x + ay) so that P " duox - 4 E

O
q=02_dzou_ dzp
dy duoy dufg
With the above values of p and g, the given equation reduces to

Z2=1+ &%5 + §%§
or @-p=+)f2E

0 \/1+a23—2:\/zz—1
u

dz 1
= du
O IJ#—J_ NETal
coshtz=_Y*C
. V1+a?
z—coshEliraerCD
or S+ B

I1l. Variable Separable Form or f,(x, p) = fy(y, ) — Third Standard Form
Let each side of this equation be equal to an arbitrary constant i.e.,
fi(x p) = fy, a) = a, (say)
Solve above relations for p and g,
p=Fi(x) and q=Fyy)
92 gy 4+ 92 dy becomes
o0x oy
dz = Fy(x)dx + F,(y)dy
which on integration results in
z=[R(x)dx +[F,(y)dy as the required complete solution.

then dz =

Example 33: Solve (i) yp+ xq+ pg=0 [MDU, 2009] (i) yp = 2xy + log q.

Solution: (i) The given equation can be written like

yp+xq=-pq O %+ =-1

o | %

or %% 5[1‘%5”‘ (say)

(1)
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So this clearly falls under category f,(x, p) = f,(y, @)

O
0O
X % ..(2)
“Fl-a

Now we know that for z(X, y),

0z 0z _ y
dz —a—d +a—dy or dz= Q:Ed)” dy

whence

2 2 2 2
O =X +Yve 0 2=--X +¥ 4p
2(-1-a) 2a (-1+a) a
(i) The given equation can be written as
1
=2x+=lo
P y gq
_1 -

0 (p—2x)—ylogq—a (say) ..(1)
which is clearly of the form f,(x, p) = f,(y, Q)

IO 2x = a@ . p=(a+2x),0
O —Iogq a =¥ ..(2)

y g .
Whence  dz= EdXJfa—dy becomes

o0x oy
dz = (a + x)dx + e® dy
or z:ax+xz+leay+b
a
or az = ax? + a’x + e¥ + ab, the desired solution of given equation.
Example 34: Solve (i) p + g =sin x +sin y, (i) Jp+Ja=x+y

Solution: (i) Rewrite p+ g=sin x+siny as:

(p—-sin x) =(sin y — q) = a (say), ..(1)
where a is an arbitrary constant.
Now from (1), we have

0z . O
— =(a+sinx),

r™ ( )
0

p—sinx = a,
z_ . O
—=(siny-a 0
y O

siny—-gq=a D

..(2)
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0z 0z

dz = Zax + 2%
Now we know that I dy y ...(3)
On using (2), dz = (a + sinx)dx + (siny — a)dy
or z=a(X—-y)—-(cosx + cosy + b)

as the desired solution.

(i) The given equation can be written as:

Jp-x=y-q=a(say)

62_ 5[]
O 0 O 07 O 4
y-Ju=ag = (-a)= f@ 92—y -apn ..(4)
ay 0
Now dz = de+ﬂdy on using (4) becomes
o0x ay
dz=(a+ x)2dx + (y—a)? dy
0 3z=(a+x)®+(y-a3’+b

which is the desired solution.
Example 35: Solve z(p?> - g?) = (x - ).

Solution: The given equation can be written as:

af 0 ad_

o EI‘anH x-y) (1)
3

Putting Z dz = dZ so that z:%i @)

f
Thus the given equation reduces to % - %H =(X-y)

or (P? = Q% = (x-Y); where P— Q——y

or (P? = x) = (Q? - y) = a (say), Third Standard Form ..(3)
(P2-x)=al P=Ja+x

so that (Qz—y):ag Q= Jaty - (4)

whence dZ=Pdx + Qdy
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ie. dZ=+a+xdx+,/a+ydy ...(5)
_2 3/2 4 2
or Z—g(a+x) +§(a+y)+b

where a and ¢ are two arbitrary constants.

IV. Fourth Standard Form: Equation of the Form z = px + qy + f(p, q)
The solution of this equation is
z=ax+ by +f(a, b)
which is obtained by replacing p and q by arbitrary constants a and b respectively in the

given equation. a.e., p= % =a and = g—; =D for z(x, y)a

This equation is analogous to Clairut’s ordinary differential equation y = px + f(p), where

dy

p= ™ and has solution y = ax + f(a), i.e. replace p by ‘a’.

Example 36: Solve z=px+qy -2,/pq.

Solution: As the given equation is Fourth standard Form
Whence complete integral of the given equation is

z=ax+by—-2Jab for z(x,y) ..(1)

For singular Integral, differentiate (1) partially with respect to a and b, we have

v 2 0 _ b O

0=x \/%[ﬂl,m X_\/;’D

o:y_img - _\FE ..(2)
Jab O Y=\bno

On eliminating a and b, the singular solution is xy = 1.

Miscellaneous Problems

Example 37: Obtain the complete solution of the equation
X = y)(px - ay) = (p - a)>.

Solution: Let (x + y) = uand xy = v

so that
002 _0z0u ozdv
0X Oduodx ovox
_ oz 0z - [0 ou_, ov_
“u v Yo B ax Tl ax T
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.. 0z _ 0z au
Similarl =
imilarly g ay au dy
[0z
EBul

Now on substituting the values of

(x—y)§%+y%g

0 Ry S

o e
ou \%

O P-Q>=0 where P——

ou

This relationship is comparable to Ist category, where f(p, q) = 0
Therefore in finding its solution, replace P by aand Q by b in it i.e.

a-b?2=0 or

0z ov

av ay

0z O ou_, ov_

v <o & ay 1, 3y
9z and 9z
0x oy

BN

az E %/
O (X = y)(X - y)g_i = (x -y %g

a=Dh?

Whence Z=au+hbv+c

z=a(x+y)+bxy+c

Z =b?(x +y) + b(xy) + c.

Example 38: Solve pg = xMy"z'.

Solution: In the given equation, on putting

Xm+1
m+1
we get
= ﬂ =
o0x
and 0z
qg=

oy

n+1

y -y
n+1

02 X _ 02

0z fY _ a0
aYy oy ° aY

—_ =X D
X ox ax H
0
B

Q__

ov

%

u

in the given equation, we get

%
ov

(1)

..(2)
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On substituting (2), the given equation reduces to

020z _, . _
6X6Y_Z ie. P Q=12
which is of the form f(z, p, q) =0

O Putting z = f(u) where u = (X + aY)
so that 0z _dzdu _dz

Y dudX du
6z_dza_u_a£

aY duaY ‘du
Equation (3) becomes,

dZ[j — 2l -1 _ 1
a =7 or z<2dz=——=du
E;u Ja

which on integration implies

and

=—+ph
_l,+1 ‘Jg
—+1
z 2 1 Oxm+t  y™*i0
== +a +b
or —%+1 \/5%+1 n+18

Example 39: Solve g%y? = z(z - pX).

Solution: On rewriting the given equation as

0 azﬁ_ 0z
—z% X5

HayH
dx O
Let == =dX
¢ X % so that X =logx
Y =lo
y H

0z _0z0Y _9z1
Therefore, dy oY dy Yy

0z _oz0
dy oYH
0
0z _ 0z [
X_ = —
ox oxH
Likewise, on using (3), (1) becomes

Bei -3

which is of the form f(p, q, z) = 0.

713

..(3)

..(4)

...(5)

(1)

..(2)

..(3)

..(4)
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The obvious solution for this is
z="f(u), u=X+ay ...(5)

Theref 0z _dz 6u_dz
eretore 0X duax du '’

a_Y:ﬁa_Y:Ea E ...(6)
On using (6), (4) becomes

aZEd—Zg+z -22=0

which is a quadratic in % and therefore,

- 2 22
dz _ z+./7" +4a°z :ziz%li ,—1+4a2H
a

du 2a°
0 a2 gz =H 1z m%iu
0 2a2Iogz=H-1tmgu+logc)
0 2a?logz =1+ 1+422 X +aY +logc) as u= X +aY
0 2a?logz = 1+ +/1+ 42> {logx +alogy + logc)
0 log 7% = -1+ 1+ 4a2 {log xy’c)
O 224 = (xyé‘c)_lﬂm as the desired solution.

Example 40: Solve z2(p? + g?) = (X2 + y?).

Solution: On re-writing the above equation as

0 62 2 412
=(x>+
g M=yl =(X* +y°) (1)
2
Let zdz=dZ so that Z—% ..(2)
0Z _0Z0z _ az
= =P (sa
Now ax 9z ox ax (say) ..(3)
0Z _0Z90z _ az
—==Q (sa
and dy az0y 6y Q (say)
Whence the given equation reduces to P? + Q2 = x? + y?
O (P> - x%) = (y* - Q%) = a (say) ..-(4)

which clearly falls under the category
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fi(x, p) = f,(y, ) = a (say)
0 From (4), we get

P2-x2=al PZ=a+x?0
and y2 - Q2 :ag Q2 =y? _ag ...(5)
O dZ =P dx + Q dy,
0 dZ =2 +adx+./y? -ady
0 Zz%x/x2+a+glog§<+\/x2+ag
y a——logglt/y —aH+b
[ O
[ 22_(X\/X2+a+y\/y _a)+aloglju

which is the desired solution.

Example 41: Solve z=px+qy+c(l+p’+q?).

Solution: Clearly this equation is of the form z = px + qy + f(p, g) analogous to Clairaut’s
form.
0 Complete solution is

z=ax+by+cJ(1+a2+b?) (D)

Singular Integral: Differentiating (1) partially with respect to ‘a’ and ‘b’ respectively,

ac

0=x+ m B
O=y+ (1+t:2:+b2) -
S
2

—x2 —\2) =
or =3t -y)= (1+a +b?)
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(L+a®+b?) _ 1

or 2 _(02—X2—y2) .-(4)

X1+ @ +b? _ X

Also from (2) and (3),a=

c - \/CZ — X2 —y?
-y/1+ a2 +b? y .
b= ST eoeoy (Using @)
c J&E =% -y
Putting these values of ‘a’ and ‘b’ in (1), the singular integral is
— 2 2 2
z= X - y + ¢
\/CZ_XZ_yZ \/CZ_XZ_yZ \/CZ_XZ_yZ
— 2 g2 _\j2
= \/% = et =Xt -y
=% -y
or (X®+y2+2%) =2

ASSIGNMENT 5
Solve 1. ¢?=7%p%(1 - p?d) 2. 2=px +qy + p?¢?
3. q(p — cosx) = cosy 4. (pa—p-q)(z—px—qy)=pg.

11.7 CHARPIT’'S METHOD

It is a general method due to Charpit for solving non-linear equations of first order. When it
is difficult to solve such equations under any of the standard forms (as discussed in previous
article) then this method is employed to find the complete integrals.

Let the given equation be f(x,y,z, p,q) =0 ..(1)
If we succeed to find another relation
Fx,y,z,p,0) =0 ..(2)

satisfied by p and g, then we can solve equation (1) and (2) for p and q
Since z consists of two independent variables x and .
O dz=pdx +qdy,
For determining F, differentiate (1) and (2) with respect to x and y respectively giving

of  of of dp  of oq _
—+—p+——+——=0
Ox 0z  0Opox 0q0x

a_F+a_F +£%+6Faq—o

ox 0z op 0x dq 0x

O
O
]
0 ...(4)
H
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af ﬂq-}-ﬂ@-}-ﬂﬂzog
ay 0z Opdy 0qoy 0
O ...(5)
a_F+a_Fq+a_F%+a_F%:OD
dy 0z  dpdy dqdy H
o 0p . o
Eliminating ax from the first pair viz (4), we get
Cof oF _oF of U Lof oF _oF of O Lof oF _oF of Doq _ .(6)
EaTap 0X apE E.Tap 0z apE EaTap 0q dpHox
a9
Similarly on eliminating E from the second pair viz (5), we get
Cof oF _orof U Lbf oF _orF of 0 Lof oF _oF of Uop _ .(7)
%Taq ay aqE EaTaq 0z aqaq EiTaq ap aqE_
0q _ 9’z _0p
Since ax_axay ay’

whence the last terms in (6) and (7) are the same with opposite signs. Adding (6) and (7), we
get

Cof afFDaf of hr U of 6fFD(?fFDc?fF
on Bt bh e R dg . o
x ozop py ozreq [ op oqpoz apmax 6<m6y
Clearly this is Lagrange’s equation (linear equation of first order) with x, y, z, p, q as
independent variables and F as dependent variable. Thus, identical to Article 4.4, its solution
will depend on solution of the subsidiary equations

dp_  dg _ dz _ dx _ dy _dF ...(10)

of of — of of —  of of — of — of o
P> Sotd5 P-4 T T
ox oz oy 0z ap aq ap 0q
An integral of the above equations (10) which involves p or g or both may be taken as
assumed relation (2). The more simple the integrals involving p or g or both derived from

(10), the more easy to solve them for p and g and the given equation (1).

Example 42: Using Charpit’s method find complete integral of pxy + pg + qy = yz.
[KUK, 2002-03]

Solution: Here f(X,y,z,p,q)=pxy+pqg+qy—-yz=0 ..(1)
then by Charpit’s method, the auxiliary equation is
dx _dy _  dz _ dp _ dqg _dog

-f, -f, -pf-af, f+pf, f +qf, O
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dx _ dy _ dz _ dp - 4
or —(xy+aq) —(p+y) -pxy+ad)-ap+y) py+p(-y)
(Px+aq-2)+q(-y)

implying dp=0 or p=a ..(2)

Putting p=ain (1), axy + ag+ qy = yz
or g@a+y) = y(z-ax)

y(z - ax)
="

. @+y) ©)

Also we know that for z(X, y),

dz=pdx+qdy ..(4)
On substituting the values of p and g from (2) and (3),
dz=adx+ Mdy
@+y)
dz-adx U a O
=l- d

or (z - ax) El a+yay

Integrating,

log(z-ax)=y-alog(a+y)+logb

or (z-ax)=beY(y+ a2

Example 43: Find complete integral of the equation p?x + g%y = z. [NIT Kurukshetra, 2008]

Solution: Here f(x,y, z, p, q) = pX+ g2y —-z=0 (1)
By Charpit’s method, auxiliary equations are
dx _dy . dz _ dp _ dg _do
-t -f, -pfo-afy, f+pf, f+af, O
dx dy dz dp dq

e. —px —20y - 2Apx+y) —pHp —q+Q

From above, we have

(p* dx +2px dp) _ (¢ dy + 2py dq)
p*X 0y

d(p*x) _ d(@’y)

Px oy
On integration  x = ag?y ..(2)
where a is an arbitrary constant.

or
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Putting value of p?x from (2) in (1),

0 2
ag’y + g’y =z or q=DLD ..(3)
dl+ayQ
72
O From (1) P:ELD 4)
’ L+ aXx ]
/2 /72
0 a7 O o 5
dz=pdx+ddy= dx + d
Thus PEPOC ATk YT Haeayd ¥

d d d
or V(1+a) 21/22 :\/axfz + y13/2

or Ja+a)z =ax +.,Jy +b

which is required complete integral.

Example 44: Solve the equation z? = pgxy. [KUK, 2003-04, 2010]
Solution: z% = pgxy may be written as
z2-pgxy =0 (1)
then by Charpit’s method of solving non-linear equations, we have auxiliary equations as:
dx _ dy _ dz dp dg

GXy PXy Ppaxy +qpxy —pgy+p2z - pgx +q2z
From above, we get
_ x dp + p dx _ y dq+qdy
(= pgxy + 2pzx) + paxy (= pgxy + 2q9zy) + qpxy

xdp+pdx _ydq+qdy 5
2pzx 2qzy +(2)
On integrating both sides,

I(X dp+pdx) _ I(ydq+qd)')

i.e.

px ay
g log px =log gyc or px =qyc
— Yy
=Ccg=
O p=cq " ..(3)

Substituting this in equation (1), we get

2~ Y5, dx = 0 , 1020
=S = or g CH)_/H
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_bDZD
or g= H}?H

Again, putting this value of g in (3) for getting p,

z —pan)zléxyzo

_1[z
zZ2—bxzp=0 or p—BQ;E
1z z
dz=pdx+qdy ===dx +b=d
Now P qay b x y y
1 1dx dy
_dZ = - 4+ b_
or 2 b x y
or logz = logx™? + logy® + log a
or 7= axl/byb - aXCllz x yc—llz Whel’e b2 — 1
c
Example 45: Solve the equation g+ xp = p?.
Solution: The given equation is
fx y.zp. Q) =(@+xp-p?) =0
Its subsidiary equations are given by
-, -f, -pf-afy fo+tpf, f,+af, O

or 2p-x -1 2p2—xp—q_p+0 0

Taking dg=0 0O q=c (constant)

0 p?-xp-q=0 becomes p’-xp-c=0
. _XEXE+ 4
l.e. p=—""F7""
2
Thus, dz=(pdx+qdy)

2
dz = XENVXT+AC \');+4Cdx +cdy, using (2) and (3)

0 2= [+ 5\ @7F i+ fdy +d

2

..(4)

...(5)

(1)

..(2)

..(3)
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:—+ B—\/x2+4c+ smh -1

4 2 1/2

ey +d . (4)

- Ja+xidx == \/a2 + X2 +25|nh 1XE
a

Alternatively: By another possible combination,

Also %=d—i O logp=-y+logh or p=heY ...(5)
p -_—
Implying q = p? - xp = b? e — xbe?, on using the above value of p. ...(6)
O dz = p dx + g dy, using (5) and (6)

dz = beY dx + (b? e — x beY)dy
dz = b(eY dx — xe¥ dy) + b? &Y dy

dz=b I]:i(xe‘y) - % D:i(e‘zy)

2
Implying, z=hxe” —%e‘2V+a

Example 46: Solve p(p? + 1) + (b - z)q = 0.

Solution: Subsidiary equations under Charpit Method are

-f, -f, -ph-gqf, f.+pf, f+af, O (1)
where f,=3p*+ 10
- 0
f,=(b-2) .
fX = 0 (2)
f = J
y 0
f,=—q 8
On using (2), equation (1) becomes
dx __dy _ dz _dp _ dq _dF
@+ -(b-2 -pBp+h-ab-2) -pg -¢ O
g p=aq ..(3)

On using (3) in the given equation,
ag(a’y’ + 1) + (b-2)g =0
O alg? @’ +{~z+ (@a+h)}=0
0 eitherq=0 or qg’a®=(z-(a+h))
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qzﬂ/z—(a+b) pzﬂ/z—(a+b)
a

or a/a , N ...(4)
O dz = pdx + qdy
. dz:‘/Z_(a+b)dx+‘/z_(a+b)dy

Ja aa

dz _dx , dy

or Jz-(@+b) Ja a/a

On integrating, we get

=2 47

1/2 Ja o ala
2Jz-(@+b) =[(ax +y)+C]/a'a

@-@+0) _ X , Y ,,

Example 47: Solve 1 + p? = gz by Charpit’s method.

Solution: Given (1 + p>-0qz) =0 (D)

Here subsidiary equations are

dx _dy_  dz _ dp _ dg
or -2p +z -2p*+qz O0+p(-g) O0+q(-0)
d d

Taking —_FF:Q :__gz
or logp = logga
g p=qa ..(2)

Putting this value of p in (1), we have

a%?-zq+1=0 ..(3)

which is a quadratic equation in g and on solving,
Z+2? - 4 1 3 5
= p=—\lzt7° - 4&
a 282 P 2a H H
Now dz=pdx+qdy

(g + /22 — 422 0 (Zi\/22—4a2)

282 dy

282 dz
u z2+7% - 422

= (adx +dy)
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e T o
0 a z=(aax +ay) rationalization
foe =)o =)

(21\/22 —4a2) .
g 2a24—a2dz =(adx +dy) Baking + both signs for the term (z +
0 31\/22—4612 Epz=2(adx+dy)

On integration (taking + both signs for the term (z FVZ - 4a2)

—+[—\/22 422 —2azlog(z+\/z2 422 )}=2(ax+y)+b.

Example 48: Solve the equation p(gq®> + 1) + (b — z)q = 0.

Solution: Here subsidiary equations are

- -f, —-pf-afy, f+pf, f,+qf, O
dX = dy = dZ = dp = dq :d_F
H -(@+1) -2pq+z ~—[p(@®+1)+q2pa-2] -pg -¢> O
dp__ da
D -pg  -q?
or logp=logq+logc
O p=cq

On using (2), given equation becomes
cq(@® + 1) + (b-2)g=0
or glcg®?+c+b-2]=0
O either cg?+((+c-2=0 or g=0
Considering cg? + (b + ¢ - z) = 0, we get

g=+ z—(b+c), D=c [z-(b+0)
C c

Now dz=pdx+qdy
O dz:c\/z_(b+c)dx+\/Z_(b+c)dy
c c
Jo——2__ = (cdx+dy)
or = y

Z-(0+0)

723

- 4a1)E

(1)

..(2)

..(3)

..(4)
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\/Ei‘z_ch):(cx+y+a)

1/2
or  4(cz-bc-c?) =(cx+y+ a)

O

ASSIGNMENT 6

Solve

1L (pPP+ )y =qz 2. 2zx - px? - 2pxy + pq =0

3. 2(z+xp +yp) = yp’

4. x?p?+yp?=z.M [Hint: Put X =log %, Y =logy, Z=4/z ]
5. Z2(p? + ¢?) = X2+ y2, [Hint: Put 22 = Z]

11.7 HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS
An equation of the form

(D"+k, D"t D1+ k,D"2D?+ ... + k, D™z = F(X, y) (1)
where D = ai and D' = ai and kj, ..., k, all constants, is termed as a homogenous |inear
X y

partial differential equation of nth order with constant coefficients.
Alike to an ordinary linear differential equation, we can rewrite (1) as
f(D, D)Z = F(x, y) ..(2)
and its complete solution consists of two parts: one is called complementary function and the
other is called particular integral.
Complementary function is the solution of the equation

f(D,D)zZ2=0 ...(3)
and particular integral is the particular solution of f(D, D*)Z = F(x, y) obtained by giving
particular values to the arbitrary constants in the general solution due to F(x, y).
To Find Complementary Functions
Take a simple case of 2nd order homogenous linear equation for finding complementary
function and then extend it to higher order.

622+K—a2Z + K ﬂ:

Let FY axdy 2 3y? ..(1)
be a second order equation which can be written in its simplified form as
(D?+ K, DD" + K,D'?) =0 ..(2)
with its auxiliary equation as
(D?+ K, DD" +K,D'?) =0 ...(3)

giving D/D" = m,, m, (say) as two of its roots.

Case |I: When the roots are real and distinct
Equation (2) may be written as

O-mD)+(D-m,D")z=0 ...(4)
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The solution of (D — m;D")z = 0 will satisfy equation (4),

Now (D-m,D)z=0ie, p-m;q=0,
Lagrange’s linear equation with auxiliary equation, is
dx _ dy _dz
1 - m "0
giving (y+myx)=aand z=b
O z=@y+ m;X)

Similarly (4) will also be satisfied by (4)
(D-m,D"z=0 ie, z=y(y+ myX)
Hence in this case, the complete solution of (2) is
z =@y + myX) + Yy + myx)
Case II: When the roots are equal (repeated):
Take m; = m, = m(say), so equation (2) becomes
(D-mD")YD-mD"z=0 ...(5)
Let (D — mD")z = u, then the above equation reduces to (D — mD")u = 0 which is again a
Lagrange’s linear equation and has solution
u= @y + mx)
Now with this value of u, equation (D - mD")z =u
becomes, p—-mg= @y + mx)
N ooodx_dy _ dz
Its auxiliary equation is 5~ = -~ @(y + mx)

[ I I

from which on considering | and Il, we get (y + mx) = a
and on considering | and I, we get dz = @(a)dx

i.e., z=@@)x+b

or z=x @y + mx) + @,(y + mx) which is the complete solution.

Example 49: Solve the following homogenous linear partial differential equations
(i) (D-2D%D" + 2DD% - Dz =0. (i) L2-9Z
' axt  ay*

(iii) 25r —40s + 16t = 0. (iv) r=a’t.

0.

Solution: (i) Its auxiliary equation is
m* - 2m® + 2m -1 =0, where D/D' = m

0 (Mm+1)mM-12%=0 or m=-1,1,1,1

Hence the solution (the complementary function) is

2= @y = X) + @y + X) + X Gy + X) + X2y + %)
(i) Here the given equation in its symbolic form is written as
(D*-D"%z=0
Its auxiliary equation is
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(m-1)=0 or (M-1Mm+1)M*+1)=0
ie., m=-1,1,i,-1i
0 The solution
2= @y +X) + @y — X) + Gy + iX) + @y — ix).
(iif) The given equation is symbolic form is as follows:
25D%z - 40DD'z + 16D'2z =0
Its auxiliary equation is
25(D/D")?> - 40(D/D'") + 16 =0
i.e., 25m?>-40m+ 16 =0 where D/D'=m

or (Gm-42=0 O m=g, g

which is a case of repeated roots
0 The solution is
z = @5y + 4x) + x @,(By + 4x).
(iv) The given equation r=a’t in its symbolic form is
D% -a?D2z=0
Its auxiliary equation is m?-a? =0
or m =+ a, which is a case of distinct roots.
O z= @)y + ax) + @y - ax).
To Find Particular Integral
Consider the symbolic form of the equation as
f(D, D)z = F(X, y)

. . 1
For this, Particular Integral (P.l.) = F(x,
gral (P.1) f0.D) x,y)
Case I: When F(x, y) = e™ * b
- 1 ax+by — 1 ax +by
P.l. _—f(D, D')e @ b)e , f(a, b) #0.

(i.e., replace D by a, D" by b)
Case Il: When F(x, y) = sin(ax + by) or cos(ax + by),

__ 1 :
= fD.D) sin(ax + by)

1

= - ab — 1) @ OY): Provided f(-a2 -ab, -b?) # 0.

(i.e., replace D? = - a2, D'?-b? DD’= - ab)
Case I1I: When F(x, y) = x™ y", where m, n are positive integer

1

P.l.=
f(D,D)

X"y" = [f(D,D")] ! x™y"

(1)
..(2)

..(3)

..(4)

...(5)

(i.e., expand [f(D, D")]™ in ascending powers of D/D" and operate on x™y" term by term.)
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Case IV: When F(x, y) is any function of x and y.

1 1

Pl = F(x,y) = F(X,
(0.0 *Y= 6 -mD)D-mp)... &Y
1
— = F(x,y) = [F(x,c — dx, where c =y + mx.
and D-mD (X,y) = [F(x,c = mx)dx y
Case V: When F(x, y) = eX* Y U(x, y),
1 1
Pl = ax+by w , — pax+by ,
D, D)° oY) = S v P Y

(i.e., replace Dby D + aand D* by D' + b in f(D, D"))
Example 50: Solve (D3 + D? D' - DD'? - D'%z = e*cos2y. [KUK, 2000]

Solution: The given equation
(D + D?D’ - DD - D'3)z = eXcos 2y
has auxiliary equation as
(M+m>-m-1)=0
or (M-1)(M+12=0 or m=1,-1,-1
whence complementary function
Z= @y + X) + @y — X) + x@3(y - X)

PI.= L
'~ D*+D?D'-DD'2-D"

Now gxcos2y

_ 1 o EbZiy +e” 2i0ta 0
D} +DD' -DD?-D% 5 2

_ 1 1 X+2iy X=2i
== [} + e y
2 D% + DD’ - DD? —D° ¢ }
| I
O . ax + by 0
%DISCUSS under, P.l. =1 ey = 8 ,f(a,b) 20
f(D, D) f(a,b) H
:E;QX"ZW +1;ex—2iy
2 (1+2i + 4+ 8i) 2 (1-2i + 4 - 8i)
(asinlst,a=1,b=2i; inll, a=1,b=-2i)
:1 1 X + 2iy +1|:| 1 X —2iy
2 5(1+2i) 2 5(1-2i)
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(1_2|) eX+2iy +1D (1+2|) ex—2iy
51+2i)(1-2i) 2 5(1-2i)1+2i)

11
N |-
ot

1 1-2i)e*dy  (1+2)e" 0
=0 + |

25 2 2 0

eX [B2Y + g~2iy N edly — p=2iy [
=— 4|

254 2 2 H

e~ .
P.l.= =—[cos2y + 2 sin2
55 €052y vl
Therefore complete solution

Z:(H(Y+X)"‘%(Y‘X)+X%(y—X)+;—;[COSZy+25in2y]

L0y L0y _
Example 51: 3 a £ =E sin pt.
Solution: The given equation in its symbolic form is written as
(D? - a?D?)y = Esinpt (1)
Corresponding A.E. is
m’>-a2=0 ie, m=za

O Yer = @t + ax) + @t - ax) --(2)
1 .
Now PI:DZ——aZD'ZESInpt
%sing, P.l. :msin(ax +by), replacing D? by —a?, DD’ by provided%
[ (—a?,—ab,—b?) # 0) 0
. Esin pt
i.e., Pl = _pzp ...(3)
Esinpt
0 Complete solution Y = @(t +ax) + @,(t —ax) + C sz))
y = @(t + ax) + ¢,(t — ax) — Esinpt/p,
0’z 0z
Example 52: Solve == - = E cosx [t0s2y. [NIT Kurukshetra, 2003]

x>  axay

Solution: The given equation can be expressed as
(D? - DD")z = cosx - cos2y
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Corresponding AE.is m?>-~m=0, when D/D'=m O m=0,m=1
whence, C.F. = @(y) + oy + x)

_ 1
Now P.I.—WCOSXCOSZy

1
—_ +2y)+ -2
oD [cos(x + 2y) + cos(x — 2y)]

cos(x +2y) +
EEPP R A pap

cos(x — 2y)§
( When cos (ax + by) replace D2 by — a?, D'2 by — b2, DD" = - ah)

1 1 O
Pl==> +2y) -2 -2
0 5 %os(x Y) 3 cos(x y)E

Therefore, complete solution,

2= Q)+ @y + ) + 5 c0s(x + 29) = <cos(x - 2)

0%z . 0%z
Example 53: Solve —= + == = .
p o * oy COS MX cos Ny

Find complete solution if F(x, y) = cosx cos2y.
Solution: The given equation in its symbolic form is
(D? + D'?)z = cosmx cosny = %[cos(mx +ny) +cos(mx —ny)] (D)
Corresponding auxiliary equation is

mZ+1=0 ie, m==i
whence CF.= @y +ix) + @y - ix) ..(2)

1 1
P.l.== cos(mx + ny) + cos(mx — n
Now 5 D2+D'2[ (mx +ny) (mx - ny)|

Replace  D? by — m? DD' by - mn, D*2 by — n?;

ie. P.I.:;cos(mx+ny)+_

L o (mx —ny)
= 2(m? +n?) 2(m? +n?)

I
- 2(m? +n?)

[cos(mx + ny) + cos(mx — ny)]

Pl.=——W-—
. (m? +n?)

cosmxcosny
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Therefore complete solution is

z=@(y +ix) + @y —ix) +———-cosmx cosny

-1
(m? +n?)

Furtherif m=1, n=2 as F(x, y) = cosx cos2y, we have

- COS XCOS2y = —lcosx cos2y
(12 +22) 5

Hence complete solution in this case is
2=y +iX)+ @y - iX)-%cosxcosZy
03z 03z 03z

Example 54: Solve — -4 =4sin(2x +vy).
P ax® aXZay axay2 ( Y)

Solution: The symbolic form of the above equation is
(D% - 4D?D* + 4DD'?)z = 4sin(2x +Y)
Corresponding AE. is m®—4m?+ 4m =0

or mm-2)?=0 ie, m=0,22
whence C.F. = @y) + @,(y + 2x) + x@y(y + 2X)
1 . 4 1
= 4sin(2x +y)a=—G3————— 2X +
Now P.I. D(D? —4DD' + 4D7) sin(2x +y)a D {-4+8- 4)sm(x y)

4 E& .
=—[sin(2x +
5% (2x +Y)
Hence method fails.

1 1
Pl= e Do dsin(2x +
O (D+2D'¢ D (@x+y)

(Here, differentiate f(D, D) twice with respect to D and multiply the numerator twice by x)
. _x? — 2
ie., P.I.—?{—Zcos(2x+y)} = -x2c0S(2X +Y)

O The complete solution is
2= @y) + @y + 2X) + Xy + 2X) — X*c0s (2X + y).

¥z, ¥z _ ¥z

Example 55: Solve o P aay Coy

= CoS (2x +Y).

Solution: The given equation is a homogenous linear partial differential equation of 2nd
order and its symbolic form is

(D? + DD" - 6D"%)z = cos(2x +Y) ..(1)
Auxiliary equation is
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(M+m-6)=0 or m=2-3. ..(2)
whence complementary function (C.F.) = @, (y + 2x) + @,(y — 3X) ...(3)
1 D2=-4

P.l.= cos(2x +y), DD'= -2

2 r_ 12
(D* + DD' - 6D?) D 2= -1
(i.e., on replacing D2 by a?, DD’ by —ab, D'? = — b? provided @(-a°, —ab, —b?) # 0)
Clearly it is a case of failure as @(-a?, —ab, —b?) =0
Therefore, we discuss it under category 1V i.e., factorise @D, D) and apply these factors
turn by turn
1

P.l.= 2X +
. (D -20)D+30) &Y

= cos(2x +¢, —2x)dx asherey+2x=¢
D+3D'I ( C ) y 1

3 ,I(coscl)dx
1
e . —— = - +2
T3 -(xcoscy) D+3 ,)xcos(y X)

= X COs(y + 2x) dx :Ixcos(cz +3x+2x)dx . y-3x=¢,
D+3D’

=Ix cos(5x +¢,) dx = Xs'”(SSX +G) ., % COS(S; +¢,)

X . 1
== 2X +y)+—cos(2x +
£ Sin(@x +y) +-cos(2x+Y) .(4)

0 Complete Integral z = C.I. + P.I.

= QY + 23 + @y ~3%) + _sin(2x +) +2—15cos(2x ).

Alternately
- - 1 ...(5)
P.l.= 2X +
f(D oy V= B0+ 3Dy @ Y
_ 1 ...(6)
= cos(2x +Y)

DD' D DD' D

Now

h R:m
wnere D'

1 _ 1
%_2%+3@'(m—2)(m+3)'
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10 _1. 0 » _
5 Etm —2) (m+ 3)E (By Partial Fraction)

0 0
_1d 1 1 E
50D _,0 0OD | ,0
%D, 25 o 30
b 1 1 O
5 HD-2D) (D +3D)H --(7)
Therefore on substituting (7) in (6), we get
P.l.= 150 1 L [pos(2x+y)

5D’ HD-2D) (D +3D){

1 11

=— cos(2x +y)dx - =— cos(2x +y)dx
sy [ cos@crydx-go [ cos@x+y)

(D=2D") D+3D
1
cos(2x + 2X dx—— cos(2X + ¢, + 3x) dx

=5 Jeos@x+a =29 Jeos(2x + ¢, +34)
1 1 sin(5x +¢,)

= ——XCOSC, —

D 5D’ G 5D’ 5

:Eilcos(zx+y)—%sin(2x+y) replacing ¢ =Yy +2x
5D 25D ¢, =y - 3x

X . 1
P.l.=Zsin(2x +y) + —cos(2x +
c (2x +Y) 25 (2x +Y)

9%z 9%z 9%z
E | X lve —= - — .
xample 56: Solve o 46x6y 36y = [x+3y

Solution: The given equation which is an homogenous linear partial differential equation of
2nd order can be written in its symbolic form as

(D% - 4DD' + 3D')z = (x + 3y)/? ..(1)
Its auxiliary equation is as
(M -4m+3)=0 or m=1,3
whence CF. =@y +x) + @y + 3x) ..(2)
For Particular Integral

(x +3y)?

F(x,y) = L

Pl.= f(D D) (D - D')(D - 3D)
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~(-3D) 3D) I O+ 3yy2ax

1 1 )
=(D—3D')_JE(+3(°1_X)§ dx sincey+x=c¢, for m=1

3 2 d
(D 3D)J-Cl XZX

0 0
1 E(3cl 2x)*/2 0

(D 3D) 2 3

—2x2 O
H > H

1 01
“(D-30)H3

(x + 3y)3/2@ On replacing ¢, = y + x

= —% J' ,(x +3y)*/2dx
D-3D

= —%I(x +3c, —9x)*/2dx, as(y+3x)=c, for m=3

Here, complete solution

Alternately: P.l.=

Considering (

_ _i (3C2 - 8X)5/2
3 — 8 X E
2
— 8y)5/2 5/2
- Ge 6§X) - X +63())/) ., replacing ¢, =y + 3x .-(3)
5/2
z=<a(y+X)+<&(y+3X)+WLg
1
+3 /2
(D-D")({D - 3D')( 2
1 1 ..(4)
— — (X + 3y)1/2
D2 0D _,00D _3D
D’ N pY
1 _ 1 D _
o 5 m-om-g When oM
DI
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O
7@3—3D'_D—D'§ ()

10 1 1
P.l.=— X + 3y)/2
2D' D - 3D’ D—D'g V)

1
+ 3y 2dx - +3y)2d
2D' O+ 3yy i 2D’ J.,(X vy
D-3D" D-D

2D'I(X +3c, — 9X)/2dx — —— j(x + 3¢, — 3x)/2dx
1 g2y — L oy W/2
2D,J'(3c2 8x)2dx D -['(30l 2x)2dx

_ 1 (B, -8x¥2 1 (3¢ —2x)*?
2D' _8x§ 2D' _2x§
2

2
= 24 o (3c2 8x)%/2 + (3(:l 2x)%/2
P.l.=- 24 O (x 3y)¥/2 + 6 (x+3y)3/2 (@sc,=y+3X, ¢, =y +X)

234 I;-, (X +3y)3/2
3 3 (X + 3y)5/2

=2 ((x +3yp/2dy =2 2TV
24I( Y=o 3x2

- bl = (X + 3y)5/2
o 60

Hence the complete solution

(X + 3y)5/ 2

= +X) + + 3x) +
Z=@y +x)+ @y +3%) 50
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Example 57: Solve the equation 4r + 12s + 9t = e~ %,

' _0z __ ¥z 0z
Solution: For z(x, y), we know that r FwE S= axdy’ t= 6y2

for z as a function of x and .

So the given equation becomes

4ﬂ 12 97 497 _ gox-y
ax? axdy  0y?
or (4D? + 12DD’ + 9D'?)z = e®*-2) (1)
d 0
D=— and D'=—
where ox dy
Now for equation (1) A.E. is as follows:
4m? + 12m+9=0, where D/D'=m ..(2)
or 2m+3)2=0 e, m:—g,—§
2 2
whence C.F. = @, (2y — 3x) + x@,(2y — 3x) [ y+mx=]
Now for obtaining particular integral, we have
P.I) = —Lewoty = & ided fa, b) % 0
00" ey P
Here z= L e®X=2) s clearly a case of failure as D = a = 3 and
4D? +12DD' +9D"
D'=b=-2, f(a b)=0for
Therefore,
Pl =— 1 2 e
3~
4D+ 500
= 713 e~ ¥dx
-
4AD+2D )
P 2~ Opp+;of

453+ D,D,IeZCdX as y:c—gx

2 — 1 Xe3x—2y

1
4%)+%D'B 4 +3
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I x e2X"2Y(dx
pito

N

2 3.0
O P.I.= X e replace, czgﬁ—x
8 P 270
Therefore the complete solution

2
z=@(2y —3x) + x @,(2y — 3x) +X§e3"‘2y

03z 03z 03z 03z
Example 58: Solve —= -4 + 2= =¥ty
P ax®  oxtdy  oxay’* @ ay°

Solution: The symbolic form of the above equation is
(D% - 4D?D* + 5DD'? - 2D"3)z = e *V

The corresponding AE. is m® —4m? + 5m -2 =0

i.e., (M-2)(m?*-2m+1)=0

or m-2)(m-1)(m-1)=0 ie, m=112

g CF. = @y +x)+ Xy + X) + ¢;(y + 2x)
Now P.I.= L Xy

D® -4D?D' +5DD"? -2D"®
It is a case of failure as f(a, b) =0 for D=a=2 and D'=b=1
Therefore,

P.l.= 1 2X +y
(D -2D')(D - D')?

1 1
P.l. = ! e2x+y
D-2D' (2-1y

1 e2x+y
D -2D'

= [eZ*°™ dx, as y+2x=c

:jec dx = x e°
:X6y+2x

0 Pl =xe>*y
Therefore the complete solution,

Z= @y +X)+ X @y + X) + @y + 2X) + x e,



Partial Differential Equations 737

Example 59: Solve (D? - DD' — 2D"?)z = (y — 1)eX.

Solution: Corresponding A.E. is

(mM-m-2)=0 ie, (M-2)(m+1)=0 (1)
or m=2-1
whence CF. =@y +2x) + ¢,y — X) ..(2)
1
P.l.= -1eX
Now D2—DD'—2D'2(y )e
1
(y-De

~(D-2D(D +D)

1
= —-1e* dx
D+D'
Corresponding to the factor D+ D*, y =¢; + X

1
PlL=— 1 [ +x-1ed
O (D—2D')I(Cl x - ljetdx

"D —120')I((C1 ~Der+xer) dx

1
= - e + -De*
5 on Ho D +(x-Def
- ﬁ Hy -2)¢*g  replacing, ¢, = (y - x)
PL= [ (y-2e dx
D -2D’

Expressing (y — 2) in terms of x as y + 2x = ¢, corresponding to the factor (D — 2D")
0 P.|.:I(c2—2x—2)ede:I((c2—2)—2x)ede

=(c,-2)eX-2(x—-1) ¢
P.I. = ye*, on replacing ¢, by (y + 2x)
Therefore complete solution z = @, (y + 2X) + @,(y — X) + ye~.
Example 60: Solve (r + s — 6t) = ycosx.
Solution: The given equation can be written as
(D? + DD’ - 6D"?)z = ycosx (1)
Corresponding AEE. is (m?+ m-6) =0
g (m+3)(m-2)=0 ie, m=-3,+2
g CF. = q@(y-3x)+ @y + 2x)
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Now P.l.= 1
D? +DD' -6
_ 1
“D+3D)D-20)"
Now apply these operators viz., (D + 3D") and (D - 2D") turn by turn on y cosx as a
function of x only

yCOS X
D2

COSX

1

= ycosx dx

(D+3D)DJ-20'
= (D+—13D')J-(C1 —2x)cosx dx Herey + 2x = ¢,
= (D+13D')[(C1 - 2x)sinx - 2cosx| replace ¢, = y + 2x
_ 1 :
= J' ysinxdx—J’ 2cosx dx

D T30 D +3D’

(c, +3x)sinxdx —2 cosxdx y-3x=¢,
2

D +3D’ D+3D’
= —(c, + 3x)cosx —J'B (—cosx) dx — 2J'cosx dx
P.l.= —ycosx +Icosx dx = -ycosx +sinx, replacing (c, + 3x) by y
O z= @y —3x) + @,y + 2x) — ycosx + sinx as complete solution.
Example 61: Solve (D? + 3DD' + 2D'?)z = 24 xy.

Solution: Here Auxiliary Equation (A.E.) is

(m+3m+2)=0 where m=D/D' (1)
0 m2+2m+m+2=0
O (mM+2)(m+1)=0 ie, m=-1-2 ...(2)
O CF. = @y - X) + gy - 2%) ..(3)
1
P.l.= 24X
Now D2+3DD +2D7
L 24xy
2D"2 [

- [1RBD'
D23+ +
E‘ Hp * p? HH
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] 2
_E EBD +2D—% 24xy

é+ 1- 3—524xy

D’
(On leaving higher order terms of D since in the term xy, y is in power one only)

_1 '
= 240y -3 %24xy

0 P.l. = 4x3% - 3x*
Therefore the complete solution is
z= @y —X)+ @y — 2x) + 4x3y — 3x4.

3
Example 62: Solve 0z _ 0z = X3S, [NIT Kurukshetra, 2007]
axd  ay°
Solution: The given equation can be written as
(D3 - D"¥)z = x3y3 ..(1)

Corresponding auxiliary equation is
-1=0 ie, (M-1)M>+m+1)=0

or (m-1(Mm-w)(m-w?) =0, for w to be the cube root of unity ..(2)
O CF. = @y + X) + @y + wWx) + @y + W) ..(3)
Now
1
P.l.= 3y3 = x3y3
D -D° 0* o g0’
- [l
IZIDIZIIj
-1
10 modlb L, 1 D3 . [lg s
=—fd-== X¥yd = —d+—+
D3El DDDE Y " p: Y
_ixs 3+D—3x3 3
"o T Y

(On taking D to the powers to which y is appearing in F(x, y) = x"y™ i.e. neglecting terms
containing powers more than 3 in D)

Xy 6x°
~ 4506 405067 B0
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_ X% X
~ 120 10080
Hence complete solution
X9
z= +X)+ +WX) + + W2X) +
QY +X) + @y +wx) + @y )+ 120 * 10080

9’z | 0’z 0%z _ ..
: - = -o—= + V).
Example 63: Solve P + axdy 66y2 x*sin (x +y)

Solution: The given equation in its symbolic form is written as
(D? + DD - 6D"?)z = X2 sin(x + )
sin(x + y) = imaginary part of e/®**¥): since we know that e® = cos8 + isin®
Real Imaginary

pPart  Part

0 f(D, D)z = I, e**¥) . x2

Its auxiliary equationis m>+ m-6=0 ie, m=2 -3
0 C.F. = @y + 2x) + @,(y — 3x)

1 .
P.l.=1m3 ey [k
Now D? + DD’ - 6D
= |m|}i(x+y) D(Z 1

DRI CETECED A4

1 2
X
D? +3iD + DD’ ~11iD’ -6D'? + 4

= Im*+Y) x2

=1
2 i J
P.I. —|mEé"X+y)1§ QD_J’g'—D—DD ~Uip -8pefh
7 = 7 R = ¥
2 '
130,50 s, 8
4 4 4 4 4 4 16
= Im*+y 1% _l_ﬂz _90
4 2 47 8H

= Im[—l} %@ —%E—%xacos(x +y) +isin(x +y)]

P.l.= %@8 —%Esin(x+y)—§xcos(x+)’)§

Hence the complete solution

2= Qy+ 20+ @y =39+ 7[3¢ ~in(x+y) = o B cos(x +)

(1)

..(2)

..(3)
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MISCELLANEOUS PROBLEMS

Example 64: Solve 4r —4s + t = 16 log(x + 2y).

Solution: The symbolic form of the above equation is
(4D? - 4DD' + D'z = 16log (X + 2y)
Corresponding AE. is 4m?-4m+1=0

i.e., 2m-12=0 or mzl,1
2 2
g C.F. = @(2y + x) + X@,(2y + X)
PlL=— 1 [6log(x+2y)

%ﬁ—zDﬁ

=4EI#1 log2cdx as (2y+x)=
D-D'

:4B#1D<Iog(x+2y)
D_ED'

=4[Jxlog2c dx
2
:4%D0920

= 2x? log 2¢(x + 2y)
Hence the complete solution,

Z= @y +2x) + x@y + 2x) + 2x?log (x + 2y).

741

(1)

Example 65: Find a real function V of x and y reducing to zero when y = 0 and satisfying

o’V | 0V

2 0y2+4T[(X2+y) 0

Solution: Here the given function V(x, y) will be obtainable from the Particular Integral

only, since C.F. = @(y + ix) + @,(y — ix) is simply an imaginary function, if y = 0.

= W{ 4T +y?)}

-4 D20
_TFQ% Dﬁ%§%+y)
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2

_ —4m D'
D? D?

"D E D2

axz +y?),  On neglecting higher powers of

01 D2 0
fo? (x* +y%) o7 (x° +y )E

T LA SIS INPS S
= -7 + —4x2x—=
g 12h 1RBHA

4 4
TX X
= ——— - 2TX%y? + Ly

3
P.l. = - 21x?y?
0 V(X, y) = - 21x%y2.

Example 66: Solve r — t = tan®x tany - tanx tan3y.

Solution: The given equation can be written in symbolic form as
(D? - D'?)z = tan®x tany — tanx tandy (1)
Corresponding auxiliary equation is
(m-1)=0 ie, m=1-1

O CF =@ +Xx)+ @y-x) ...(2)
Now P.1. :ﬁ (tan®xtany - tanxtandy)
GE D')l(D oy (tan’xtany ~tanxtan®y)
1
- ' (tan®xtan(c, - x) —tanxtan®(c, —x))dx here (y + x) = ¢,
©+D) D-D'
= 0 jD') Hsec?x - J)tan xtan(c, - x) — tanxtan(c - X){sec2 (c, - X) - 1} Hx
= D iD,) Han (c, — x)tanxsec? x — tan xtan (¢, — x)sec?(c, — x)Hix
-1 _ s w1 ) .
o+ D,J'tan (6 =) tanxsec? X dx ——— D,J'tan xtan (¢, — x)sec(c, — x) dx

| Il [ I
[Integration by parts viz., Ist function Int. Il —[(Diff. Ist) (Int. 1Ind) dx]
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__ 1 tanx 1 o 2 0
D+D,Ean(c1 X) 2Isec(cl x) tan xdxH

1 tan?(c, - x) 1 ) ) a
+—=—fdanx —— 23— - =['sec?x tan?(c; — x)dx
A A RIS

D+D 2
@lnce d %tm% tanxsec?x and d g@gz tan(c, — x)sec?(c, — x)(—1)§

= m Han? xtan(c, — x) + tan x tan?(c, - )

+I{ (sec?x — 1)sec? (¢, - X) - sec?x (sec? (¢, = X) - 1)‘”}5
= 2(Dl+D) Ean2 x[Fan(c, - X) + tan xkan(c, - X) +J'{secz x = sec?(c; — X)} dxg
- 2(Dl+D) Han?xdany +tanx@an?y +(tanx + tany)g

(on replacing (c; — x) by y in all terms)

:2(Dl+D') Ban?x{any + tany + tanx + tanxdan? yg
= 2(Dl+D) Hanysec?x +tanxsec? yH

= % I {tan (c, + x)sec? x + tan xsec?(c, + x)} dx
D+D’

(As here y — x = ¢, for the factor D + D" in (D, D'))

%gtan (c, + x) sec® xdx + [tanx sec?(c, + x)dx :

| I H

(i.e. taking up 2nd integral only)

%gtan (c, +x) sec® xdx + tan x tan(c, + x) Isecz X tan(c, + x)dx2

B

[N

= =tanx tan(c, + x)

N

1
P.l. :Etaantany (replacing c, + X, by y)

Therefore complete solution,
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z :(a(y+x)+(&(y—x)+%tanx[tany.

Example 67: A surface is drawn satisfying r + t = 0 and touching x? + z? = 1 along its

section by y = 0. Obtain its equation in the form z?(x?> + z% — 1) = y?(x*> + z?).

Solution: The symbolic form of the given equation is
(D?+D'9Hz=0 or (D+iD)D-iD"Yz=0

g CF. (2) = @y + ix) + ¢y — iX)
Now we know that

:az

0x

a ] - 11 .
and :a—;:(pl(y+|x)+%(y—|x)

p =@ (y+ix)-ig (y —ix)

Also from the given x> + z2=1 or z=+1-x?

Thus, ox 12
_0z

and q_a_y:

Now under the given condition that at y = 0, the surface touches x, + z, = 1

0z _ 0z _
(i.e., at y = 0, the tangents ax P, E =0 must be equal)
Precisely,
i@y +ix)-igy-ix)] - = —ﬁ@
and [@'(y +ix)+ @ (y —ix)]y-o =0 H

- ] - _ X ] - — X -
or 2I(Q(y+IX)—ﬁ or (&(YJ"'X)—W: y=0

' . y +ix
or + = J =
A+ 21+ (y +ix)y

Integrating both sides,
0 QY+ =21+ +IXF +a
Now from (7), we get
Gy-x)=-@y+ix) at y=0
1 (y+ix)

_10 i
2 [l+(y+ixg 28 Ji-egaty=0

(no matter, since y = 0)

(1)
..(2)

..(3)
..(4)
..(5)

..(6)

. (7)

..(8)

...(9)
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iy iy 1 (y—ix)
@ (y —ix) z—m at y=0

On integrating both sides, we get
qb(y—ix):%«/1+(y—ix)2 +b

1 - -
whence 2= {JIF G+ P + T+ 5 - ixP) +c ..(10)
where c=(a+bh)
Now on equating the two values of z as in (5) and (10), we get

«/1—x2=%{2x/1—x2}aty=05 ¢ O c=0
=0

Therefore zzé{\/1+(y+ix)2 +\/1+(y—ix)2}

0 22 = 1+ (y +ixp =1+ (y - ixp
Squaring on both sides, we get
472 + 1+ (y +ix)? — 4z, /1+(y +ixy =1+ (y —ixy
or (2% +ixy) = /1 + (y + ix)?

Again squaring on both sides, we get
7% + 2ixyz? + iPx%y? = 722{1 + (y + iX)?%}
0 Z* + 2ixyz? — x2y? = 22 + 7%y — 72%% + 27%xyi
0 2222+ X = 1) = y(Z? + X7
Example 68: Find a surface passing through the two lines z=x=0,z-1=x-y =0
satisfying r —4s + t = 0.

Solution: The given equation may be written as

(D?-4DD" +4D'%)z =0 ..(1)
Its auxiliary equation is m? —4m + 4 =0
or (M-22=0 ie, m=22 ..(2)
g CF. (@ =@y +2x) + x g,y + 2X) ..(3)
Since the above surface (2) passes through the lines z=x=0and z-1=x-y =0
g z=0=@y+2x)+0- @y + 2X)
i.e., Qy+2x)=0 ..(4)
and z-1=0=x-y ie, z=1 and x=y
O 1=y + 2x) + x@,(y + 2x)

On using (4), we get

1 1_3 3 3
+2X) == +2X) === =_— =
Py +2x) X or @ly+29 X 33X 2x+Xx 2x+y
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3
+2X) =
0 @y +2x) x+y ...(5)
Hence the required solution is
- 3 -
Z—XT_'_y or Z(2X+y)—3X

11.9 NON-HOMOGENOUS LINEAR EQUATIONS

If the differential coefficients involving in the partial differential equation f(D, D*) = F(x, y)

are not of the same order than it is called ‘non-homogenous linear partial differential equation’.
Alike homogenous linear p.d.e. its solution also consists of two parts viz. complementary

function and particular integral.

To Find Complementary Function

For Complementary Function, factorise f(D, D") into factors of the form (D — mD* — a), say,
so that (D — mD* - a)z =0 or p- mq= az is solved for z.
The subsidiary equations for above equation are

[ Il I
On considering | & 1, we get

dx _ dy .
2= 2 e, +mx)=c
1 —m vy )=¢C
From | and Il1, we get
dx _ dz _dz . — o pax
1T a0 ©F adx = S e, Z=C,e”
or Z = e @y(cy) = e @y + mx)

Likewise, find solutions for other such factors and add them to get complementary function.
Example 69: Solve (D - D'-1)(D- D' -2)z=e>Y + x.

Solution: Here f(D, D) = (D- D" -1)(D- D' - 2)
On comparing it with f(D, D*) = (D - m;D* - a,)(D - m,D" - a,)

m=1 m=1
we get a, =1 a,=2
0 CIF. = €%y + MyX) + gy +m,X)
1 1 B
P.l,= F(x,y) = g2x -y
Now 7 #(D,D) ) (D-D' -1)(D-D'-2)
10y

C(2+1-)@2+1-2)
(Replace D by a=2and D' by b = -1, provided f(a, b) #0)



Partial Differential Equations 747

e2x—y

N |~

1

P.l., = X
(D-D'-1)(>-D'-2)

1
= X
~FL-(0-D)Ex 2 -2 @ - D)

_1 _ T -1 _1 — 'D_l
=31~ -D)I'd-2(0-D)g x

=%[1+(D' —D)+...]é+%(D—D’)+...

1 D o _1 ,13_x
=—d+D+—+...X==Xx+=—==~—
2Ell 2 o 2" 22 2

~le M

Therefore complete solution,

e Y x .3

2= @y +x) +eZ @y +X) +

Example 70: Solve the following equation
(D+D"-1)(D +2D"-3)z = (4 + 3x + 6y)

Solution: Here f(D, D") = (D + D' - 1)(D + 2D" - 3) is non linear and comparable to
(D-my D' -c))(D-m, D" -¢))

where o il_l} and n;j j _2}
From (D - m; D' - ¢;)z = 0, we have
z=qly + mx)e™ = ¢((y - x)e*
and from (D - m,D" - ¢,)z = 0, we get
z = @y + myx)e?* = @y — 2x)e>

00 Complementary Function (C.F.) = @y — X)e* + @y — 2x)e*
Now for Particular Integral

1 1
P.1. = F(x,y) = 4+3X+6
@=10.0) Y = D7+ 207 +3DD - 4D 5D +3)" Y)

L (4 +3x + 6Y)

or P.l.(2) = 1
3%+§(D2 +2D"? +3DD' - 4D - 5D')E
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1
(D? +2D"? + 3DD' - 4D - 5D)E (4 + 3x + 6Yy)

11
Wk, Wk

00|H w |-

% 4D—5D')+...§4+3x+6y)
(Taking higher order terms as zero
g +3x +6y) + D(3x) +2 D (ey)E

\ [

3

[EN

=-@+3x+6y+4+10H

w

18 +3x +6y
3
[0 Complete solution = @y — x)eX + @y — 2x)e™2 + (X + 2y + 6).

=(x+2y+6)

Example 71: Solve (2DD' + D'? - 3D")z = 3¢0s (3x — 2y).

Solution: Here f(D, D*) = (2DD* + D2 - 3D*) = D'(2D + D" - 3)
0 Complementary function = e% @,(x) + e¥ @,(2y - x)

1

P.lI.= 3cos(3x -2
Now DD + D7 —3D SO X ~ )
__ (=9
= @D - )3005(3X ~2y) [ f(D? DD', D'?) = f(-a2, —ab, —b?) # 0]

On replacing D? = —-a> =9, DD' = -ab = 6, D?2=-h>=-4

58D +8)

3-———=cCcos(3x -2

o7 = gg 05X ~2)

3
=——(@3D'+8)cos(3x -2
Lop G0 +8)cos(3x - 2y)

= 5—?2)[3sin(3x —2y) + 4cos(3x — 2y)]

Therefore complete solution,

=@ () + 6 @ 2y - X) + 5%[4cos(3x —2y) +3sin(3x - 2y)]

Example 72: Solve r—s+ p = 1.

Solution: The given equation can be expressed in symbolic form as
(D’-DD'+D)z=1
For complementary function, we write it as
DD-D"+1)z=0
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O CF.=eX@(y) + e gy + %)
N PlL=—* 1
ow " DD-D +1)

:—(1+D Dy DL:—[l D+.]1= E; 1+..50
=x-1
O Complete solution is z = @,(y) + e*@,(y + x) + x - 1.
Example 73: Solve (D?- D2 - 3D + 3D")z = eX* % + xy.
Solution: Rewriting the given equation as
(D-D")(D + D' -3)z=xy + e*% comparable to
(D-my D" - a)(D-m,D* - ay)z = F(x,y)
C.F. = €qy(y + myx) + *qy(y + myx)
or CF.=e™q(y+x) +e¥*oy-x Tmp=1 my=-1
c,=0; ¢,=3
Now Particular Integrals corresponding to xy and e** 2 are as follows:
1

P.I, = X
1T D-D)D+D -3 Y " 3Dgl D'D D oo
30
—1 DD E@l D DE
Xy
101 ,1 2D |1 1 1
S~ +Z+S =—+-D+=D'+= DD’+—+
3 3 3D 9 3 9 %y
(On taking terms of D, D, DD’ to the power 1 since in F(X, y), x and y are in power 1 only)
_. 1, 1., 1 1,1 30
P.l,=- x+x+x+ +x++x
TR Y 9y 3 6 H

— 1 X + 2y . ,
P.l, = (D-D)(D+D’ _3)9 ' Replacing D by 1 and D" by 2

- 1 X + 2y
(1-2)(D+D' -3)

- 1 ex+2y
D+D' -3
= —pX*+2y 1

1
[D+1+D' +2-3]
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S e S
D+D'
-1
1 D'O
— —pXt2y v
e DEEH o0 W
=—xety,
Therefore complete solution z = @(y + X) + e¥@,(y — X) —xeX* &,
Example 74: Solve (D - 3D' - 2)?z = 2e** tan(y + 3x).

Solution: Here symbolic form of the equation
(D -3D' - 2)z = 2e* tan(y + 3x)
is comparable to f(D, D*) = (D - 3D" - 2)?z = 2e** tan(y + 3x)
a non-homogenous linear equation with repeated factors (D — mD" — a).

whence C.F. = e @y + 3x) + xe* @,(y + 3X)
Now P.I.:(DTE,_Z)ZeZXtan(y+3x),
= 2¢* D2 —13D' =2 tan(y +3x), (Replace D by (D + 2))
= 2e¥ Wtan (y +3x)

1
=2¢ 31— ftancdx, ¢=
| =0y +3)

= 2% EIL Cktanc = 2e2* xtancdx
D -3D' .

2
= 2¢%% E% tan(y + 3x)

P.l. = x? e* tan(y + 3x)
Therefore the complete solution
z = e @y + 3x) + xe> @,(y + 3x) + x%> tan(y + 3x).

Example 75: Solve (D? + 2DD' + D2 - 2D - 2D")z = sin(X + 2y).

Solution: The symbolic form of the given equation is
(D? + 2DD' + D2 - 2D - 2D")z = sin(x + 2y)
Thus f(D, D) = (D + D")(D + D' - 2) is comparable to
(D-mD"-a)D-m,D"-a,)
so that
C.F. = e™*@(y + mx) + e%2%@,(y + m,X)



Partial Differential Equations 751

= e @y - x) + e @,(y - X) omp=1 a,=0
m,=1, a,=2
1 .
Now P.l.= sin(x + 2
(D? +2DD’ + D? - 2D - 2D') O+ 29)
_ 1 .
= sin(x +2y)

(-1+2(-2) +(-4) - 2D - 2D")
(Replacing D°=-1, DD' =-2, D'?=-4)

-1

= WS”’I(X + 2y)

_ -1[2(D + D') - 9]
[2(0+ D)+ 9][2(D + D) - 9]

sin(x +2y)

-1[2(D - D') - 9]

= A1+ 2(-2)- 4] - 81sin(x +2y)

:%@Dsin(x+2y)—2D'sin(x +2y) - 9sin(x + 2y)H

P.1. :%@cos(x+2y)—9sin(x+2y)g

Hence the complete solution

z= (a(y—x)+e2xq§(y—x)—ﬁ@cos(x+2y)—9sin(x+2y)§

. 0z _ 0z 0z_.,_
Example 76: Solve e oxdy + ox X2+ Y-

Solution: The symbolic form of the above equation is
(D? - DD" + D)z = (X2 + y?)

Here D, D)= D(D- D' + 1) comparableto = (D - m,D" - a,)(D- m,D" - a,),
with m=00,=0 m=1a,=-1
So that CF.=aq(y)+e* gy +X)

Now L (X% +y?)

PlL=— =~
DD -D' +1)

1

"oy © Y
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1 n-1
=B[1+(D —D)] (X% +y?)

= % H-(D-D’)+(D?+D?-2DD') +(D* - 3D?D’ +3DD"* ~ D" )Hx? +y?)

101 D' D2
== —1+—+D+——2D'+D2+3D'2§x2+ 2
Db "D D ¥)
3
:E%+xy2—x2—y2+2yx+2x—2y—2—65

3
:X?+xy2—x2—y2+2xy+4x—2y+8

Therefore complete solution
3
2= Q)+ QY +X)+ L+ Xy —x2xy + A=y~ 2y +8
Example 77: Solve (D? - DD' + D' - 1)z = cos(x + 2y) + V.

Solution: Here f(D, D) = (D?-DD'+ D'-1)=(D-1)(D- D' + 1)
On comparing it with (D - m;D* - a,)(D - m,D" - a,)

we see m=0,0,=0 m,=10a,=-1;
whence CF. =eXq@(y) + e* gy + x).
Now P.l. = P.l.; + P.l.,, where P.1.; Particular Integral corresponding to cos(x + 2y) and
P.1.,, Particular Integral corresponding to e¥
1
P.l.,= cos(x+2
O 1" (D2-DD' +D' -1) (x+2y)
1
= cos(x+2y), (Replace D?°=-1,DD' -2, D?=-4

1
=—cos(x+2
~ (x +2y)

:%sin(x +2y)

L e
D’-DD' +D' -1
It is a case of failure as f(D, D*) = f(a,b) =0fora=0and b=1in e’
Therefore differentiate f(D, D") with respect to D and multiply F(x, y) by x.

0 P.I.Z:xﬂ;ey
2D -D'

Now replace D by a (=0) and D* by b (= 1)

\}

and P.l,=
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Pl,=——x¢& =—xe&¥
OJ 2 0-1

Therefore, z=@y)+e gy +x)+ %sin(x +2y) — xe¥

Example 78: Solve (D® - 3DD' + D' + 4)z = e *VY

Solution: Here f(D, D*)z = (D3 - 3DD" + D" + 4)z which can not be factorised in terms of
D and D
Let its solution be z = e+ b

Implies (D3 -3DD" + D" + 4)z = @(a, b)e™ * % = (a — 3ab + b + 4)ex+by
then (D®-3DD'+D'+4)z=0, if (a®-3ab+b+4)=0

Whence CF. (=3 Ne™*®, where (@®-3ab+b+4)=0

Now P.l.= 1 ety
D3 -3DD'+D' +4
e2x+y

_23_3(2)+—1+4 ashere a=2,b=1

- 1e2x+y
7

0 Complete solution (z)=F A e™*% +%e2x+y, where (a® -3ab+b+4)=0

ASSIGNMENT 7
Solve the following equations:

o2, o2 0z
x> 0xdy ay
3. (D?°-DD"+D'-1)z=cos(x +2y)+¢&. 4 (D?’-D")z=2y-x°

z=e" 2. DD'(D + 2D + 1)z = 0.

(C"answers )

Assignment 1
1. () px+ay=0, (i) p+q=mz (iii) q=px+ p?
. - #?z _9z0z ~0
2. () x(y-2p+y(z-x)q=2z(x-Y) (i) axdy oxdy

3. ()z=px+qy+p’+0q? (i) px-qy =0
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(i) % = % (iv) z(px + qy) = 22—

Assignment 3

2 1 .
1 z= X?Iogy +axy + @(x) + Y(y) 2. 2= Tz sinxy +y £(X) + o(x)
3. z=sinx + e&’cosx 4. 4= etsinx + @Xx) + @y)
5. z=logx - logy @(x) + @) 6. z=¢e*Y+ @ly) + @X)
Assignment 4
1. f(xy, x> +y?+2%)=0 2. QX—+— xyzl/SD 0
3. f(x®-y3 x2-29)=0 4. fx+my+nz, x> +y>+2%) =0

z-kO_ Ux-y z-u ,, _ 130
5 f%,ix =0 6. f%'y—z'(z u)(x+y+z+u) 0= 0

Assignment 5
1. Z?2=a?+(x+ay+b)? or z=b 2. z=ax+ by + a%h?

ab 0O

. 1 .
Z=ax+sinx+=siny+c¢ z=ax+by+ ———
3. a y 4. y ab-a-bH

Assignment 6

1. 72=(a+ bx)2 + a%? 2. z=ay+b(x*-a)
ax a® b
3. Z:?_A{_y:;+§' 4. 4z = (alogx + 6logy + ¢)®> wehre a®> + b> = 1

5. 22 =(b+xm+alog{x+Jx7+a2} +ym+alogy{y+m})

Assignment 7

L z=e>q(y) +eqly - x) - % 2. 2= @y) + G(-X) + eX @y(y — 2%)
4
3. z=e*@(y) +e@y + x) —%sin(x + 2y) — xe¥ 4. 7=3he™HY—_y2 - :—2



